A PATHOLOGICAL EXAMPLE OF A UNIFORM QUOTIENT
MAPPING BETWEEN EUCLIDEAN SPACES

OLGA MALEVA

ABSTRACT. A uniform quotient Lipschitz mapping between Euclidean spa-
ces of dimensions n and n—1, which annihilates the unit ball of a hyperplane,
is constructed.

1. Introduction. This work is inspired by the paper [BJLPS], where Lipschitz
quotient mappings and uniform quotient mappings are studied. A map f: X —

Y, where X and Y are metric spaces, is called a uniform quotient if

for any € X and r > 0, where w(r), (r) are functions of the radius r indepen-
dent of the point z, such that w(r) > 0 for r > 0 and Q(r) — 0 as r | 0. If the
first inclusion holds, f is called uniformly continuous; if the second holds, f is
called co-uniformly continuous or co-uniform. If w(r) > cr, Q(r) < Cr for some
¢,C > 0, f is said to be a Lipschitz quotient mapping (co-Lipschitz if the first
inequality holds and Lipschitz if the second inequality holds).

There is a developed theory of uniform / Lipschitz quotient mappings which
are one-to-one ([BL]), but not much is known in the general case.

For example, if X, Y are Banach spaces then the Gorelik principle ([G], [JLS])
says, that one-to-one uniform quotient mapping cannot carry the unit ball in a
finite codimensional subspace of X into a “small” neighborhood of an infinite
codimensional subspace of Y. The proof of the Gorelik principle actually shows
that a bi-uniform homeomorphism cannot map a ball in a subspace of codimen-
sion k into a small neighborhood of a subspace of codimension k + 1. This holds
regardless of whether X and Y are finite or infinite dimensional.

One may ask, if a similar principle holds for uniform quotient mappings, which
are not one-to-one. It turns out, that this is not the case even for finite dimen-

sional spaces.
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As it was proved in [BJLPS], for each n there is a uniform quotient mapping
from R?"*! onto R® which maps the unit ball of the hyperplane to zero. More-
over, there is a stronger example for low dimensions: A Lipschitz and co-uniform
mapping from R? onto R? which annihilates the unit ball of a hyperplane.

In the present paper we generalize this construction to the case of arbitrary
dimension. The result of the paper reads as follows:

For n > 1 there is a Lipschitz and co-uniform mapping T from R**2 = R**! R
onto R™*! such that T(B]FHHEDO(O)) = {0}.

2. The idea of the construction. Before going into the technical details we
briefly describe the example and the proof in an informal way. The space R**+?2
is decomposed into the direct sum R"*' @ R = {(z,a) | z € R"*',a € R}, and
the mapping is of the form T'(z,a) = @.(||z[) - Uy, (=)=, where U is a family
of orthogonal operators acting on R**1. This family together with the functions
va(l|z|]) and v,(]|z]]) are chosen in such a way that the mapping T is clearly
Lipschitz.

The main part of the proof deals with the co-uniformity of 7', namely we
check the inclusion TB,(z,a) D By(,)(T(z,a)) for a fixed radius r > 0. Tt
turns out that if @ or ||z| is large enough, more exactly if ||z|| > 1 + a;7" or if
la| > aor for suitably chosen constants ay and «s, then for a fixed and y close to
fa(z) = T(z,a) in R, the gradient of f, !(y) is uniformly bounded in norm by a
certain constant ¢, depending on r. So T'B,(x,a) D T(B.(r),a) D B,,.(T(x,a)).

The other case is: ||z|| is less than 1 (or not much greater than 1) and |a| < asr.
In this case the inclusion 7'B,(%,a) D By, is of different nature. If 2 remains
fixed and a runs over [0, asr] (so the point (z,a) does not leave the ball of radius
r), the point T(z,a) “draws” a curve which is “dense” in the ball Bj,|..)(0)
in the sense that its small neighborhood contains B, |c(,)(0) D By (T (z,a)).
This small neighborhood is contained, say, in the image of B, >(x) x [0,a2r] C
B, (z,a), so the inclusion follows. This remarkable Lipschitz curve T'(z, [0, aor])
looks like a spiral of infinitely many turns around 0, when z € R? (see Fig. 1

below). In higher dimensions the curve is some spatial analogue of such a spiral.

In this part we use a special lemma, which allow us to approximate a fixed
2w 27
PER IR
The question, whether there exists a Lipschitz quotient mapping from R" onto

modulo 27.

finite sequence of angles by residues of 27”,

R™ which annihilates an object of dimension greater than n — m, remains open.
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FiGure 1. The image T'((0,1),a), —1 < a < 1 is the projection
of the bolded curve onto the bottom plane

This work will form part of a Ph.D. thesis written under the supervision of
Professor Gideon Schechtman. The author thanks Professor Gideon Schechtman

for suggesting the problem and for useful discussions.

3. The construction.

Theorem. For n > 1 there is a Lipschitz mapping T from R**? = R"*! R onto
R**! such that T is a co-uniform quotient mapping and T(B]FHH@O(O)) = {0}.

Proof. Let x;, be the kth coordinate vector of the space R"*!, and Ozpxpy; de-
note the coordinate plane spanned by xj, ;1. We interpret R* as the subspace
of R"*! spanned by 1, ..., 2. Denote by 7, the standard orthogonal projection
R**1 — RF. Let S¥ denote a sphere in RF*! of radius r, centered at zero. By

Owpary, We mean the orthogonal transformation of the space, which acts as

planar rotation by « in the kth and (k + 1)th coordinates, leaving the rest of the

coordinates unchanged. Note that

(1) if ||v|| = |lw|| and v — w € Ozgxgy1,

then w = Rg, ., . v for some a € [0,27].
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We define the orthogonal operator Uc[y’ff,l,,]ak inductively by

U(Lt2] = R811127
k k — «@ k
vl = Wit )R, L UL L

For z fixed and «; running over [0, 27 ] independently, UL?H]% () runs over the

whole sphere in R"*1 of radius ||z||, centered at the origin.

To show this, let us note first that {Uc[f](:ﬂ) |a €[0,2n]} = S|1\z|\ for z € R2.
Assume that Uc[y’f}__wakfl(a:) runs over the whole sphere S"r;Hl for fixed z € R,
Now fix z € R¥*! and take arbitrary y € SII\CEH' Since 71, (z —y) € R¥, there exist

Qs, ..., such that UL;C,]__”Q,“W]C(.’E —y) = WkULI;]___,ak(.’E —y) = ||m(z — y)||zk-

3

.....

By definition this means that ULIICH]MCC =y.

For u € R, let d,,: Ry — [0,1] be the continuous function such that d,(t) =
min(|ul,1) for t <1, d,(t) =1 for t > 2, d,(t) is linear for 1 < ¢ < 2.
Define T: R**! x R — R**! by

) [n+1]
T(z,a) = don (1210Us s, (21 20,2 ()27 f (12]) E

Note that for n = 1 this reduces to the construction in [BJLPS].

Let us check that 7" is a Lipschitz mapping. For ||z| > 2 this is clear, since
T(xz,a) = z. The restriction of T to the set {(z,a) : ||z|| < 2} is the composition
of a Lipschitz mapping

(z,a) = (2, da(llz]]), daz(llz), - -, dan ([l2]])),

with

(b1, tn) € (b, t) 2] S 2,0 Sty < - <4 < 1)

27rln+1] .
= t"U27'r/t1 ..... 27r/tnw’

the latter is 1-Lipschitz in x, and each entry of the matrix

2 r7[n+1]
tnUZﬂ/tl,...ﬂﬂ/t,,,

is a combination of sin 2* and cos 2%, multiplied by t2; as t? < tZ, such an
; i

expression has bounded partial derivatives in t;.

Let us begin the proof of the co-uniformity of 7" with the following Lemma.
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Lemma 1. For 0 < p < 1 there exists a constant ¢, depending only on p and n,
such that

T(B,(z),a) D B., (T(x,a)), if either a” > p or |z|| > 1+ p.

Proof. Note that for each nonzero a the inverse of the mapping
fl@) = T(w,a): B+ - B
can be obtained as

Fl(y) = pa(\ly\l)( [n+1]

a llyll 27 /da(pa([Yl)s 27/ don (Pu(\ly\l))) 1y’
where p,(t) is the inverse of q,(t) = td2.(t) (the above holds also for a = 0 as
long as ||z|| > 1). For ¢t € (0,1)U(1,2)U(2, c0), the derivative of g,(t) is bounded
below by d?2. (t), i.e. is not less than a®™ A 1; moreover, d?. (t) is bounded below
by p?, when ¢ > 1+ p. Thus, if either a™ > p > 0 or ||z|| > 1 + p, the derivative
oL (Jlyll) is not greater than p% for y = f.(z). Let us compute the ith partial

derivative of f, ! at y = f.(z); note that p,(||y||) = ||z|:

—1 ' . i
(2) Yt = dllbuigrp, (ly]))y — 2T (p, (Jly]))y
2ol g g, ) e + 2L (gl - U7 (Ul

where U (¢) stands for ( 2[:7; ]( ), 2w fdun (1 ))’ The norm of the first summand is
pa(llyl) —

Tyl

(H T < 2, the norm of the third is less than or equal to % < p%. If

t = pa(|ly]l) = 2 then U’'(¢) = 0, therefore the norm of the fourth summand is

less than or equal to HQTH,ﬂ IU'(&)]|lly]]- Tt remains to estimate the norm of the

matrix ||U’(¢)||. The matrix (UL""'L. )~ is the product of 2" — 1 rotations in

less than or equal to % , the norm of the second is less than or equal to Z

2-dimensional planes by *a;; the derivative of such a rotation with respect to «;

is either zero (if 1 # j) or an orthogonal matrix, so || 82 @l -1 <2n 1.

Therefore

n

@l < @ -10Y 2

=1

(t)
)'| < 2m(2 Z 70
27(2" —1)n C
STEm S
as dgn (t) < d,;(t) and d!;(t) < 1. Thus, the last summand in the right-hand
side of (2), as well as the whole gradient of f, ' at the point f,(z), has norm not

greater than p% for some ¢ depending on n.
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We have proved an intermediate result: if either a” > p or the norm ||p.(y)| >
1+ p, then |V (y)|| < ¢p~* for some constant ¢ > 1 depending only on n.

Now in the case a®™ > p the norm of the gradient of f,!(y) is bounded by
the same constant cp~* at all the points y, so the preimage f, ' (Bys/c(fa(x))) is
contained in B,(z), which is equivalent to T(B,(x),a) D Bs,.(T(x,a)).

Let us examine the other case: ||z]| > 1+ p. Note that

z||) — 2) > £ mij "(€) > (L£)3.
aulllel) — ae(14+8) > 5 _min (&) > (5)

Therefore for all z € Bys j16.(fa(x)) we have ||z]| > || fa(@)]| — p°/16¢ > || fa(2)|| —
p* /8 > qa(1+ &), so the norm of the gradient of f, ! at z is bounded above by
%, as pa(||z[)) > 14 £. This means that f, ! (B,s/15.(fa())) C B,(x), which is
equivalent to T'(B,(z),a) D B j16.(T(x,a)). O

Now let us show that 7' is co-uniform. We may consider only (z,a) in R"*?
with @ > 0 and assume that the radius r lies between 0 and 1.

FIRST CASE. 7 < 2" g or ||z]| > 1 + (555)". Let p = (5557)" then Lemma
1 implies that

TB.(z,a) D T(B,(z),a) D B, (T(z,a)).
SECOND CASE. r > 2""9g and ||z|| < 1. Let us show that the set

Ty L r < v < lyll =zl ly — =l < 7}

coincides with the sphere SCHEH of radius c||z||, centered at zero, whenever k >

n45 .
2T is an integer and 0 <c<

1 1
Take z € R"*! of norm ¢||z||. Fix ¢1,...,¢n € [0,27] such that ULTH] T =

----- Pn

=. The following lemma will be proved later:

Lemma 2. For any ¢1,¢2,...,9n € [0,27] and any positive integer k > 2 there
exists v € [k+_1 1 such that

ontly
k

(3) okl e —URT) el <

for all z: ||z|| < 1.
Now find v € [ 457, ], such that (3) holds. Then

2 € Bowr i (UYST)) 5  (@)) = U Bowrini(a),
oy
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ie. 2 = UET’;; or (y) for some y € Byntigp(w) N S|y . This means that
R EARET

nt1

z= T(r?nyﬁ) Iyl = lz]| and ||y — || < 2"*'x/k < rZ;
the statement.
We have

T < r/4, which proves

)+ la =",

I(@,a) = GGy, DI* < (lz —yll + 11— 55

Now let k£ run over all integers greater than % For each k, let v run over

1 1
m,z],crunover[m,(

z|| < 7}. For such v, ¢ and y we have

N ] and y run over the set {y | |ly|| = ||z, |ly—

<2(1—

k" n(k+2)" "1 4
) <4 G < TS e

since 0 < a < 555, 0 <y < + < 55+ we obtain |a — y|> < (5:5+)? and thus

(Il = yll + 11 = 5%

P e =2 < (5 + 355)° + (555)7 <’

C

It means that all the points (557y,7) as above lie in the ball B,(z,a). Conse-

quently,

(4) TBT(.’E, a) D U SCHIH = B”(EHTQ'H/(271+G)’ZH (0),

0<e< (k)2

as ¢ runs over [0, (gr355)"" ] D [0, (555)?" |- Note that formula (4) holds for
all z,a,r such that 0 < a < 5755 and [Jz]| < 1.

Since

IT(@, )l = e l|z]l < (5)2" o]l < etk

we conclude that
TBT(CC, a) D B”z”r27l/(2n+0)2n (T(a:7 a))
Now if ||z| > r/2 then

TBT(.’E, a) D BT/Z_T27:/(2'H+9)2'H (T(’El a)) =B p2ntl (T(’El a)),

while if ||z|| < r/2 then, putting y = rz/(2]z]|),
TBT(£E70,) ) TBT/Q(’I"QS/(2||$||),G) = TBT/Q(y7a)

D Blyjirjapenpantoyn (0) =B jonsr  (0)D B oot (2)
22'"+1(2ﬂ+0)2n 22n 2(2 +G)
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for all ||z|| < % Here formula (4) is valid for the triple y, a,r/2, since
the conditions 0 < a < 37 /f and ||y|| <1 hold. But

271+1

17 (z,a)| = azn”T” < (2nr+0) r/2 < W

so TB,(z,a) DB 241 (T(z,a)).

THIRD CASE. 1 > 2"9a and 1 < ||z]| <1+ (55)". By (4)

TBT(CC,(I) OTB 1 (W ) OB 1
r(l—(2,,+9),,) ;

sy oy (O)

Now formula (4) is valid since a < r/2"t? < r(1 — W)/Q”%. Since

) <2 (2n+0)n:

don ([l2]]) < 0™ + [lz]| = 1 < 0™ + (75

we obtain

IT(, )]l < (2 ()™ llol] < 4oy (1 + (55

Therefore

TB.(z,a) > B T(z,a)).
(2:8) 3 B on (1 by pamseyen T (2 0) O
Remark. Oune can see that the order of the co-uniformity module w(r) at zero

5n 2n+1

varies for different cases: in the first case w(r) ~ r°™, in the second w(r) ~ r

and in the third it is of order 2"

Proof of lemma 2. Note that the matrix 7UL?112] ______ has operator norm not
greater than 277!, because it is a sum of 27~ matrices of norm 1. Therefore
n+1 [n+1] j—1 ~
||U<[Pl7<P’] 1\ Pn Uip1,4p) B ” < 22] [((pj - on) mod 27r]-

Hence if v € [ 2 Tk L1 satisfies (5) below, then for all  such that ||z| <1

+1 1] 14 ntln
wyt,) el w,x||<22] =<2

O

12

vt 77”
Lemma 3. For any ©1,92,--.,9n €[0,27] and any positive integer k > 2 there
exists ¥ € [ = i ] such that

() =2 mod 2 < 4 forall = 1,...,n -1

’y.Y

and @, — —’,f mod 27 = 0.
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Proof. Let N(j) = (k+ 1) — k% — 1. We define the sequence {a%‘]}g(:"g by

al"l = 27(k" +m) + ¢,.

N(J)

m=0

Now for each j =n,..., 2 having constructed the sequence {a[r,{]}

3 3

such that
al?V e [ 2n(k? +m), 2n(k7 + m +1) ] and al7! — ; mod 27 < i
[5-1]

we construct {am '} as follows. Note first that the derivative of the

function ¢;(t) = 2m(sk) 7 is less than § for ¢ € [ 27k’ 2m(k + 1)7 ]. This

implies that

4i(a") = g (27k7) < (o — 2wk} <
and, for 0 <m < N(j) — 1,

Qj(agv{ll) - Qj(a%]) < (agv{-]fl - a%])% < 4%-
Also

g2k +1)) — gi(ay))) < @r(k+1Y — ] )< 2.
It follows that we can choose {a[r,zfl]}z(:jgl) among {qj(a[r,{])}ﬁ(:ja so that
a7 e 2r(k ™ +m), 2x(K " +m +1) ]

and a[r,{*l] — @j—1 mod 27 < 47”.

Consider {a%]}zg% forj =1 this is one point. Let us define v = 3.
2o
Then ?Y—f belongs to {a%]}ﬁ(ja for each j, so (5) holds. O
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