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ABSTRACT. We show that Lipschitz quotient mappings between finite dimensional
spaces behave nicely (e.g. are bijective in the case of equal dimensions) if the Lip-
schitz and co-Lipschitz constants are close to each other. For Lipschitz quotient
mappings of the plane, a bound for the cardinality of the preimage of a point in
terms of the ratio of the constants is obtained.

Let X and Y be metric spaces. The class of Lipschitz mappings f: X — Y is
defined by the condition: f(B,(z)) C Br.(f(x)) for all points z of X and all positive
r (by B,.(z) we denote an open ball of radius r, centered at x). Here L is a constant
depending on the mapping f but not on the point z; the infimum of all possible such
L is called the Lipschitz constant of f.

In a similar way, co-Lipschitz mappings f: X — Y are defined by the condition
f(B.(z)) D Be(f(z)), where the positive constant ¢ is independent of z and r; the
supremum of all such ¢ is called the co-Lipschitz constant of the mapping f.

By definition, Lipschitz quotient mapping is a mapping that satisfies both of the
above conditions, i.e. is L-Lipschitz and c-co-Lipschitz for some constants 0 < ¢ <
L < o0.

The recently developed theory of Lipschitz quotient mappings between Banach
spaces raised many interesting questions about properties of these mapping. Here we
are interested in the case when X and Y are finite dimensional Banach spaces.

Let f: R™ — R™ be a Lipschitz quotient mapping. It is immediate that the
existence of such mapping implies that m > n, and f is necessarily surjective. What
else can be said of f? Are the properties of f similar to those of linear quotient

mappings?
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The paper [JLPS| contains far-reaching results for Lipschitz quotient mappings
f: R? — R%. In particular, it is proved there that the preimage of each point under
such an f is finite. The question whether the same is true for Lipschitz quotients
f: R* = R" for n > 3 is still open. On the other hand, there are irregular examples
of Lipschitz quotients between different dimensions: as was shown in [C], there exists
a Lipschitz quotient mapping from R?® to R? such that the inverse image of zero
contains a 2-dimensional plane.

In this paper we try to approach regularity properties of Lipschitz quotient map-
pings which depend on the ratio ¢/L of the co-Lipschitz and Lipschitz constants of
the mapping, where the domain and range R are equipped with two general norms.
This ratio is obviously not greater than 1, and it is not hard to prove that if ¢/L = 1
then f: (R",||-||) — (R, || - |) is affine (see Corollary below).

The idea is to look what happens if the two constants are close to each other. It
turns out that in this case Lipschitz quotient mapping behaves in a regular way.

In the proof of the first theorem, we use the notion of n-dimensional Hausdorff

measure:

Mo (A) = supinf{D (£2%2)" | A c | J ¢y, diam C; < 6}
j=1

: 2
>0 izl

Of course, the diameter in this definition is with respect to the metric given by the

norm. Note that H, is so normalized that the measure of a unit ball is equal to 1.

Theorem 1. For each n there exists a universal constant 0 < p,, < 1 such that if
|| - || and || - || are two norms on R" and f: (R",[| - ||) — (R", || - ||) is an L-Lipschitz
and c-co-Lipschitz mapping and p, < ¢/L < 1, then the preimage of a point under f
is a single point (so that f is a bi-Lipschitz homeomorphism). The constant p,, does

not depend on the norms || - || and || - ||.

Proof. Since we may rescale the mapping, multiplying it by a constant, we may
assume that the Lipschitz constant L is equal to 1.
Assume that f(z) = f(y) with ||z —y|[] = R > 0. Let r = R/(1 + 1) and

z = 57+ Cily. Consider the open ball Bg(z). We claim that the image of
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Bgr(z) \ B,.(z) coincides with the image of the whole Bg(z), and therefore contains
the ball B.gr(f(2)).

Indeed, Bg(z) \ B,(x) contains B, .(y), and f(B,.(y)) contains B,(f(y)) which is
the same as B,(f(z)), and contains f(B,(x)); thus f(B,(z)) is already contained in
f(Br(2) \ B.(x)). This implies that f(Bg(z) \ B.(x)) is equal to f(Bg(z)).

Recall that a 1-Lipschitz function does not increase the n-dimensional Hausdorff
measure of a set (which can be easily seen from the definition of H,). Applying
this to the set Br(z) \ B,(r), whose image contains a ball of radius cR, we get that
R™ —r™ > (cR)". This is equivalent to ¢,(c) = (c+1)" — " — " (c+1)" > 0.

Thus, if f is non-injective then 1, (c) > 0. But ,(1) = —1, so there exists p, < 1
such that 1, (c) < 0 for p, < ¢ < 1. O

Corollary. Let || -|| and || - || be two norms on R" and let f: (R",||-||) — (R™, || - )
be a Lipschitz quotient mapping whose Lipschitz and co-Lipschitz constants are equal.
Then f is an affine isometry up to a constant factor; in particular, the norms || - ||

and | - || are essentially the same.

Proof. Consider a ball B,.(z) and its image By,.(f(x)). The image of each interior
point of B, (x) is an interior point of By, (f(z)), so f(0B,(x)) D 0B, (f(x)). Since
the ratio ¢/L is equal to 1, the mapping f, by the theorem above, is one-to-one. The
inverse mapping f ! is also a Lipschitz quotient whose Lipschitz and co-Lipschitz con-
stants are equal, so f (0B, (f(x))) D 0B,(x). Therefore, f(0B,(z)) = 0Br.(f()).

This means that | f(z) — f(y)| = L|lz —y|| for any 2 and y, so f/L is an isometry,
and by a classical theorem of Mazur and Ulam [MU], f is affine. O

The proof of Theorem 1 raises several questions already in the case when n = 2 and
-1l = ||| is the Euclidean norm. As we mentioned earlier, it was proved in this case
that for any ratio ¢/L of the co-Lipschitz and Lipschitz constants of the mapping,
the preimage of a point is finite. Now the proof of the theorem above yields some
constant py ~ 0.839287 such that for ¢/L > ps the mapping is a homeomorphism. On
the other hand, the basic examples of non-bijective Lipschitz quotients of the plane
are f,(re’) = re™® n > 2 with ratios of constants equal to 1/n, so the maximal

value is one half.
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Question 1. Is it true that if the ratio of the co-Lipschitz constant and the Lipschitz
constant of a Lipschitz quotient mapping from the plane to itself is greater than 0.5,
then the mapping is a homeomorphism, i.e. the preimage of each point is a single

point?

Question 2. Is there a scale 0 < --- < pg") < e < pgl) = py < 1 such that for any

Lipschitz quotient mapping f: R*> — R? the condition ¢/L > pgn) implies #f 1(x) <

n for any o € R*?

It turns out that the answers to both these questions are positive. The next theorem

asserts that the appropriate values of the scale are pgn) =1/(n+ 1), so in particular

Py = pgl) =1/2.

Theorem 2. If f: R? — R? is an L-Lipschitz and c-co-Lipschitz mapping with re-
spect to the Euclidean norm and
—1
ma r)=mn
max #f(z) = n,

then ¢/L < 1/n.

Proof. Without loss of generality we may assume that f(0) = 0 and L = Lip(f) = 1.
By [JLPS] there exist a homeomorphism h: R* — R? and a polynomial P(z) of one
complex variable, such that f = P o h. Clearly, deg P = max,cg> #f () = n. If
n = 1 then the statement is obvious. Assume n > 2.

Changing h by a transformation of the form h — ah + b, we may assume that
h(0) = 0 and the leading coefficient a,, of P(z) is 1. Then P(0) = f(0) = 0 and P(z)
has the form 2" +a, 12" '+ -+ ay2.

We consider R? as the complex plane, and use the notation |z| for the norm of
xr € R%.

Let {z1 = 0,29...,2} be the set of preimages of zero under f, denote M =

maxi<;<k |2z;/|. Assume ¢ > 1/n, then there exists € > 0 such that ¢, = ¢(1—¢) > 1/n.

Lemma 1. There exists an R such that for any x with |x| > R one has |f(z)] > ¢1]x|.
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Proof. Take R > M /e, then for any r > R one has r — M > r(1 —¢). Fix any point x
with || > R. Then 0 belongs to B/ (f(x)), which, by the co-Lipschitz property, is
a subset of f(B|j)c(z)). This implies that there exists a preimage z; of zero, such
that z; € B|s() /e(x). Then |z;—x| < |f(2)|/c, so |f(x)] > c(|z]—|zi]) > e(|z| - M) >
clz|(1 =) = ¢q]z|. O

Let us show that for large enough r the index of the image f(9B,(0)) around zero

is equal to n.
Lemma 2. For any r > 1 there exists ' > r such that |h(x)| > r for all |x| =1r'.

Proof. Take R from Lemma 1, let ' = max{R,r, é Sr_, laglr®} + 1 and suppose
that |h(z)| < r for some |z| = . Then |f(z)] = |[P(h(x))] < Yoi_, |ak||h(z)]F <
Sor_, lag|r® < ;7' — this is a contradiction with Lemma 1. By definition, ' > r. O

Lemma 3. For any d > 1 there exists p > d such that

Indy f(9B,(0)) = IndyP(h(dB,(0))) = n.

Proof. Take Ry such that ZZ: T‘fﬁ‘k < 0.5 for any r > R;. Let r = max(d, R;) and
p =r">r from Lemma 2. Then |h(z)| > r for || = p. Therefore, if the curve v is
h(9B,(0)), then for any z € v one has P(z) = (2" + |2|"(>2p—, ‘T;f:)) = 2"+ |z|"¢(2)
with [p(2)] < Zz;i‘z“'i—’i‘k < 0.5, since |z| > r > Ry. This implies IndgP(y) =

Indg2" = n, since Indgy = 1. O
zEy

It is enough to note, as we shall in Lemma 4, that the length of f(0B,(0)) for such
p > R, where R is from Lemma 1, is at least n-27wcip > 2mwp. This is a contradiction,
since 1-Lipschitz mappings do not increase the length. This finishes the proof of the

theorem. O

Lemma 4. If v: [0,1] — R? is a closed curve with |y(t)| > r for all t € [0,1] and
Indyy = n, then the length of v is at least 2wrn.

Proof. Fix any € > 0 and consider a regular polygon A = AgA; ... A,, 1, centered at
zero, of perimeter at least 27r — , inscribed in the circle of radius r.
We consider R? as a complex plane. For simplicity assume that v(0) and Ag lie

on the positive real semiaxis, so that Ay = r and Indg(AgA; ... A, 14p) = 1. Let
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0=ty <t <--+<tyu, =1Dbeaset of points ¢ € [0, 1] such that v(¢;) lies on the
ray RY A, mod m (in other words, argv(t;) = 27j/m). Consider a closed broken line
v = (to)y(t1) - .. v(tmn). Note that length(y') < length(y) and Indgy' = n. Also
|v(t;) — ¥(tj+1)| > |Ag — Ay] for all j. This means that length(y') > nm|A; — Ay| >
n(2mr — ). Since this holds for arbitrary e, we get length(y) > 27rn. O

Recently, M. Csornyei [C] constructed an example of a Lipschitz quotient mapping
from R?® to R? such that the preimage of zero contains a 2-dimensional plane. It
is natural to conjecture that such phenomena cannot occur if the Lipschitz and co-
Lipschitz constants are close to each other.

The rest of this paper will be devoted to the case of different dimensions. We will
consider only the case of the standard Euclidean norm, using the notion of orthogonal

projection.

Lemma 5. For a finite set A, let p(A) be the minimal FEuclidean distance between
two different points of A. Let dy pr be the mazimum of p(A) over all N-point subsets
A of Fiw(()), the Euclidean unit ball of RM . Then
1. if A c By(0), |Al = n+ 1, then p(A) = dpi1,, if and only if A is the set of
vertices of an equilateral n-dimensional simplex A, 1 inscribed in the (n — 1)-
dimensional sphere S7''(0) = dB"(0);
2. dptin > dpgin—1-

Proof. 1. Let us show that p(A,11) = dyt1,- Take any set A = {ay,...,a,41} C
B} (0) such that p(A) = dyy1,. Then by definition A2y, = ming lla; — as]]* <

2 — 2max;;(a;, a;), since [|a;|| <1 for all 7. But

n+1
max(a;, a;) > Ave{ai, a;) = g llar + -+ ans P = llaill)
i=1

St laa?

It follows that d2 |, ,, < 2+2/n = p(Ani1)® < d)y 1. 50 p(Ang1) = diyr,n. Moreover,
if p(A) = p(A,41), then (a;, a;) must equal —1/n for all i # j, and thus ||a;|| = 1 for
all ¢ (otherwise min,; |la; — a;||> < 2 + 2/n). This means that A is an equilateral

n-dimensional simplex whose vertices lie on the unit sphere.
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2. It is enough to note that a subset of FTl(O) can be regarded as a subset of

E?(O), and as such, it is not an equilateral n-simplex. ]

Theorem 3. There exists a universal constant 0 < o, < 1 such that if f: R**™ —
R" is L-Lipschitz and c-co-Lipschitz mapping with o, < ¢/L < 1, then the preimage
of a point under f cannot contain an (m + 1)-dimensional surface having at least one

point with tangent (m + 1)-plane.

Proof. We again assume that L = 1. Let us prove first that the preimage of a point
under f cannot contain an (m + 1)-dimensional ball. Assume the opposite is true:

—m+1 —n+m

f(Br (0)) =0. Let B= By (0) and ? = 9f(B). Denote by 7 the projection of
R™*™ on the first m + 1 coordinates (so that 7B = §g+1(0)), let 7 =1— .

Since for any interior point z of B its image is an interior point of f(B), the
preimage of a point of ? lies on the sphere S 1(0). Note that ||y|]| > cR for any
point y € 7 C R*, since f(B) D B.x(0). But ||f(z)| < cRif |7z| < ¢R for ||z| < R,

so we get that 7 is contained in f(S), where
S={zeR"™: ||z = R and |[7z|| > cR}
={z e R""™: ||z|| = R and ||7z||* < (1 — ¢*)R*}.

Let us use the notation dy 5 from Lemma 5. Note that 7 contains n+1 points with
pairwise distances at least cRd,,11,, (? is the boundary of a set which contains B, (0);
consider an equilateral n-simplex inscribed in S”,*(0) and take the intersections of
the rays from zero through the vertices of the simplex with 7). Let A;,..., A, be
their preimages in S. Since f is 1-Lipschitz, we conclude that ||A4; — A;|| > cdp1,R
for v #£ j.

Furthermore, ||A; — A;||2 = |7 A; — 74| + |TA; — TA;||2. Since A, € S, the first
summand is not greater than 4(1 — ¢?)R?. Consider {7A.} as n + 1 points in the
(n — 1)-dimensional ball of radius R. Then min,; [|TA; — 7A;|| < dpi1,-1R.

Thus

R < min A = A S A= AR+ b, R
W< ,

which implies

2 4+di+1,n71

— 4+d2

C .
n+1,n
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4+di+1,n71

2
4+dn+1,n

If we put o, = , then 0, < 1 by Lemma 5 and for ¢ > o, we get a
contradiction.

Now assume that f(7') = 0 where T is an (m+ 1)-dimensional surface with tangent
(m+1)-plane L at the point u € T. We may assume that L is a plane spanned by the
first (m + 1) basis vectors, L = Oxy ... Zy41. If ¢ > 0, there exists € > 0 such that
c—e > 0,. For this fixed € there exists R > 0 such that for each point v in §Z+m(u)ﬂL

—n+m

there is a point ¢ on 7" with ||v—¢|| < eR. Consider a ball B = B},  (u) and as before
denote by 7 the projection of R**™ on L (so that 7B = §Z+m(u) NL= Eg“(u)),
7 =1—x If |7z]| < (c — €)R, then ||f(2)|| < cR, so 8f(B) is contained in f(5),
where S = {z: [|z]| = R and |7z — u|2 < (1 — (c — £)2)R?}.

Let the points A; be as before, then
R S min Ay = AP S A0 = (= )R+ R

This implies 4 +d2 ., > d2,,,, +4(c — 2)* > o.d; +4ol =4+4+d2,,, by

n'n+l,n

the definition of the constant o,. This contradiction finishes the proof. O
This work will form part of the author’s Ph.D. thesis. I would like to express my
gratitude to G. Schechtman for many useful discussions, valuable comments, and
pointing the relevant literature. I would like to thank G. Godefroy for a number

of interesting ideas and helpful conversations, J. Lindenstrauss for suggesting good

interesting questions, and Y. Bazlov for his comments and corrections.
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