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DIRECTIONAL UPPER DERIVATIVES AND THE CHAIN RULE

FORMULA FOR LOCALLY LIPSCHITZ FUNCTIONS

ON BANACH SPACES

OLGA MALEVA AND DAVID PREISS

Abstract. Motivated by an attempt to find a general chain rule formula for
differentiating the composition f ◦ g of Lipschitz functions f and g that would
be as close as possible to the standard formula (f ◦ g)′(x) = f ′(g(x)) ◦ g′(x),
we show that this formula holds without any artificial assumptions provided
derivatives are replaced by complete derivative assignments. The idea behind
these assignments is that the derivative of f at y is understood as defined only
in the direction of a suitable “tangent space” U(f, y) (and so it exists at every
point), but these tangent spaces are chosen in such a way that for any g they
contain the range of g′(x) for almost every x. Showing the existence of such
assignments leads us to a detailed study of derived sets and the ways in which
they describe pointwise behavior of Lipschitz functions.

Introduction

The main motivation for the research presented here is to provide a general chain
rule formula for differentiating the composition f ◦ g of Lipschitz functions f and
g between finite dimensional or infinite dimensional spaces that would be as close
as possible to the basic formula

(0.1) (f ◦ g)′(x) = f ′(g(x)) ◦ g′(x),
where h′(x) denotes the derivative of a map h : X → Y , which is considered as
an element of the space L(X,Y ) of continuous linear maps of X to Y . Recall
that, as observed by a number of authors, even for Lipschitz functions this formula
may become invalid at every x. A typical example is given by g : R → R

2 and
f : R2 → R defined by

g(x) = (x, 0) and f(x, y) = |y|;
the chain rule fails because f is not differentiable at any g(x).

For mappings between finite dimensional spaces this question was previously
studied by Ambrosio and Dal Maso [2]. In the Lipschitz setting (we will discuss
their more general setting allowing g to be of bounded variation later) they prove
that, given Lipschitz g : Rn → R

m and letting for a.e. x ∈ R
n,

(0.2) T g
x =

{
y ∈ R

m : y = g(x) + g′(x; z) for some z ∈ R
n
}
,
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then for every Lipschitz f : Rm → R
k the derivative (f |

T
g
x
)′(g(x)) exists for a.e.

x ∈ R
n and

(0.3) (f ◦ g)′(x) = (f |
T

g
x
)′(g(x)) ◦ g′(x) for a.e. x ∈ R

n.

Comparing (0.3) with (0.1), we notice a significant difference: while in (0.1) the
derivative of f on the right hand side depends only on f and the point at which
it is taken, in (0.3) it depends also on the function g. A more natural analogue of
(0.1) would be

(0.4) (f ◦ g)′(x) = (f |Tg(x)
)′(g(x)) ◦ g′(x) for a.e. x ∈ R

n,

where the “tangent space” Ty depends only on the point at which it is taken and
on the function f and is such that (f |Ty

)′(y) exists for every y. We call a (Borel)

family of spaces (Ty)y∈Rm for which (0.4) holds a tangent space assignment for f
and the mapping f�(y) := (f |

Ty
)′(y) a derivative assignment for f . (Thus there

is essentially no difference between the concepts of tangent space assignments and
derivative assignments for f , but the former is better suited to questions of existence
and the latter to applicability to the chain rule formula.) Of course, the validity
of (0.4) requires that for a.a. x, the image of g′(x) be contained in Tg(x); in other
words that for every g, the tangent space T g

x defined in (0.2) be contained in Tg(x)

for a.a. x ∈ R
n. We call derivative assignments for f that satisfy this condition

for every Lipschitz g complete (Definition 4.1). It does not follow immediately
that complete derivative assignments for f exist. Our main results, Proposition 5.2
and Theorem 5.7, show that they indeed exist, even in the infinite dimensional
situation of spaces having the Radon-Nikodym property, in which case “almost all”
is understood in the sense of the σ-ideal L defined in Section 1.

There is no canonical way to choose a tangent space assignment for a given f . We
present several ways of defining them. The simplest to describe is defining Ty as a
maximal linear subspace in the direction of which f is differentiable. However, this
assignment can be highly non-measurable, which seriously limits its applicability.
In Example 5.4 we point out that under the continuum hypothesis there are even
less constructive choices. We therefore take great care to establish measurability
of the tangent space assignments (Ty)y∈Rm and the corresponding “generalized
derivatives” f�(y). A more constructive example is obtained, for instance, by
choosing Ty as the space of all vectors e such that the directional derivative f ′(y; e)
exists and whenever f ′(y; e′) exists, one has

f ′(y; e+ e′) = f ′(y; e) + f ′(y; e′).

In Remark 5.8 we show that this assignment is measurable with respect to the
σ-algebra generated by Suslin sets (and hence universally measurable). Although
this may already be useful in applications, the natural measurability requirement
in this context is Borel measurability. In Proposition 5.1 we therefore define several
tangent space assignments by replacing the additivity of the directional derivative
with inclusions between so-called derived sets, which are the limit sets of decreasing
sequences of sets of divided differences with the upper bound for the denominator
going to zero, and in Theorem 5.7 we show that this approach indeed leads to Borel
measurable tangent space assignments.

The above program leads us naturally to a detailed study of derived sets of
Lipschitz mappings. In particular, in the infinite dimensional situation lack of
compactness means that the derived sets understood as limit sets may not describe
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the behavior of the function; for example, they may be empty. We therefore base
our considerations on so-called approximating derived sets, explain how one should
understand the inclusion between them, and give rather precise information on
smallness (in the sense of porosity) of sets in which various notions of derived sets
give different results.

We also address the following natural question. Even if one has a working chain
rule formula (0.4) for a composition of two functions with tangent space assignment
(Ty)y∈Rn depending on the outer function f , this still does not settle the problem for
the composition of three or more functions. Indeed, as presented above, the chain
rule formula gives the derivative of f ◦g : Rn → R

k almost everywhere, so the whole
image of a mapping w : Rl → R

n may lie in the set of points where the chain rule for
f ◦g does not hold. We answer this problem by stating and proving in Theorem 4.2
the chain rule formula for obtaining a complete derivative assignment for f ◦ g by
composing complete derivative assignments for f and g. This immediately implies
a chain rule formula for any finite composition of mappings, also in the case of
mappings between separable Banach spaces with the Radon-Nikodym property.

A natural question which was pointed out to us by J. Borwein is whether a
chain rule for mappings f : Y �→ R holds with a naturally defined subdifferential,
in particular, with the Michel-Penot subdifferential. We show that with the Michel-
Penot subdifferential it is false, but that it holds with the upper Dini subdifferential
∂Df(y) (defined in Definition 6.7). The chain rule then takes the form

∂D(f ◦ g) = (∂Df) ◦ g′ a.e.

and corresponds to defining the tangent space assignment Ty as the set of directions
at which all elements of ∂Df(y) attain the same value. This result generalizes earlier
work by Craven, Ralph and Glover in [11], where the chain rule via the upper Dini
subdifferential is proved for the composition of a Lipschitz function and a Gâteaux
differentiable function.

Finally, we briefly explain that our results show that the g dependent “tangent
spaces” T g

x may be replaced by the (f dependent) derivative assignments also in the
chain rule of Ambrosio and Dal Maso [2] in which the inner function g is assumed
to be only of bounded variation. (This rule generalized a number of previous
results, for whose discussion we refer to [2].) To describe it, we assume without
loss of generality that the given function g : Rn → R

m of bounded variation has
already been modified so that it is approximate continuous at every point of the
set E of points at which it has an approximate limit and denote by ∇g/|∇g| the
Radon-Nikodym derivative of the L(Rn,Rn)-valued measure ∇g, the distributional
derivative of g, with respect to its variation |∇g|. Then, analogously to (0.2),

(0.5) T g
x =

{
y ∈ R

m : y = g(x) +
∇g

|∇g| (x) · z for some z ∈ R
n
}

is well-defined |∇g| almost everywhere, and [2] shows that for every Lipschitz
f : R

m → R
k with f(0) = 0 the derivative ∇(f |

T
g
x
)(g(x)) exists for |∇g| a.e.

x ∈ R
n and for every Borel A ⊂ E,

(0.6) ∇(f ◦ g)(A) =

∫
A

∇(f |
T
g
x
)(g(x)) ◦ ∇g

|∇g| (x) d|∇g|(x).

We show in Theorem 7.4 that for any complete derivative assignment (Ty)y∈Rm

and any function g : R
n → R

m of bounded variation the inclusion T g
x ⊂ Tg(x)
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holds for |∇g| a.e. x ∈ R
n. Hence (0.6) holds also with ∇(f |

T
g
x
)(g(x)) replaced by

(f |
Tg(x)

)′(g(x)).

1. Preliminaries

To make our results independent of future developments in the study of dif-
ferentiability of Lipschitz functions f : X → Y between separable Banach spaces
X and Y , we will understand the notion “almost everywhere” in the sense of the
σ-ideal generated by the sets of non-differentiability of such functions. The main
notions of differentiability we will be interested in are the one-sided derivative of f
at a point x ∈ X in the direction of e ∈ X, which is defined by

f ′
+(x; e) = lim

r↘0

f(x+ re)− f(x)

r
;

the bilateral derivative of f at x in the direction of e, defined by

f ′(x; e) = lim
r→0

f(x+ re)− f(x)

r
,

in both cases, of course, provided the limit exists; and the Gâteaux derivative of
f at x, which is, by definition, the mapping f ′(x) : X → Y , f ′(x)(e) = f ′(x; e),
provided all these derivatives exist and the map e → f ′(x)(e) belongs to L(X,Y ),
that is, it is continuous and linear.

Notice that f ′(x; e) exists if and only if both f ′
+(x; e) and f ′

+(x; −e) exist and
f ′
+(x; −e) = −f ′

+(x; e), and if this is the case, f ′(x; e) = f ′
+(x; e). In particular,

in the definition of the Gâteaux derivative, f ′(x; e) may be replaced by f ′
+(x; e).

The σ-ideal L. Let X be a separable Banach space. We denote by L (or L(X))
the σ-ideal generated by sets of points of Gâteaux non-differentiability of Lipschitz
mappings of X to Banach spaces with the Radon-Nikodym property. Hence E ⊂ X
belongs to L (or, as we say, is Lipschitz null, or, for short, L null) if there are
Lipschitz mappings fi : X → Yi, where Yi have the Radon-Nikodym property, such
that

E ⊂
∞⋃
i=1

{x ∈ X : fi is not Gâteaux differentiable at x}.

As usual, we will use expressions such as “a property P (x) holds for L almost every
x ∈ X” instead of {x ∈ X : not P (x)} ∈ L.

It is easy to see that E ⊂ X is L null if and only if there is a (single) space Y
with the Radon-Nikodym property and a (single) map f : X → Y such that

E ⊂ {x ∈ X : f is not Gâteaux differentiable at x}.
More substantially, [37] shows that L is generated by the sets of directional non-
differentiability of Lipschitz maps into spaces with the Radon-Nikodym property.
So E ⊂ X is L null if and only if there are ei ∈ X and Lipschitz mappings
fi : X → Yi, where Yi have the Radon-Nikodym property, such that

E ⊂
∞⋃
i=1

{x ∈ X : (fi)
′
+(x; ei) does not exist}.

However, even on this fairly basic level most questions are open. One of many
interesting open problems about the σ-ideal L is whether it is generated by the sets
of points of (Gâteaux or directional) non-differentiability of real-valued functions.
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Interestingly, unlike in the one dimensional case, it is not true that every set from
L(R2) is contained in the set of non-differentiability of a single real-valued Lipschitz
function (see [35, Theorem 6.4] or, for more detailed results on this phenomenon,
[13–15]), but by [1] it is contained in the union of the sets of non-differentiability
of two such functions.

Very recently, significant progress had been made on the description of the
σ-ideal L in the finite dimensional situation. In one dimensional spaces it coin-
cides with the σ-ideal of sets of Lebesgue measure zero. (The fact that the former
is included in the latter follows from Lebesgue’s theorem on differentiability of
monotone functions; the converse can be found, e.g., in [8], and a full description
of non-differentiability sets on R is in [39] or [19].) The key differentiability result,
Rademacher’s theorem ([38] or [18, Theorem 3.1.6]), shows that in any finite di-
mensional space L is contained in the σ-ideal of sets of Lebesgue measure zero. In
the converse direction, a geometric description of sets from L in finite dimensional
spaces and the coincidence of L with Lebesgue null sets in the two dimensional case
were obtained in [1], and very recently announced (but not yet published) results
of Csörnyei and Jones [12] use this description to show that L coincides with the
σ-ideal of Lebesgue null sets in every finite dimensional space.

In infinite dimensional spaces, several estimates of the size of the sets from L are
known. Aronszajn’s theorem [3] (Theorem 8.3 of this note) gives a rather strong
result, and in this sense contains all earlier results estimating the size of L (including
Christensen’s [9] very appealing notion of “sets of Haar measure zero”). However,
[37] provides some σ-ideals that are strictly contained in Aronszajn null sets and
still contain L.

Notice that results on, say, differentiability of Lipschitz functions may be easily
extended to locally Lipschitz functions. For example, if G is an open subset of a
separable Banach space X, Y has the Radon-Nikodym property and f : G �→ Y is
locally Lipschitz, then f is differentiable L almost everywhere on G. This may be
seen as follows: We write G =

⋃∞
i=1 B(xi, ri), where f is Lipschitz on B(xi, si) ⊂ G,

define fi(x) = f(x) if x ∈ B(xi, si) and fi(x) = f(xi + si(x − xi)/‖x − xi‖) if
x /∈ B(xi, si), and observe that the set of points of non-differentiability of f is
covered by the union of the sets of points of non-differentiability of fi. The same
argument applies in a number of situations we investigate, and we will therefore
often state our results for locally Lipschitz functions on open sets, but prove them
for everywhere defined Lipschitz functions only.

Porosity. We now introduce the concept of (directional) porosity, which will often
become the main tool in our investigations. We say that P ⊂ X is porous in
direction of e ∈ X if there is a c > 0 such that for every x ∈ P and ε > 0 there is
0 < t < ε for which B(x + te, ct) ∩ P = ∅. Here B(z, r) denotes the open ball of
radius r centered at z.

When V ⊂ X, we say that P is σ-V -directionally porous if there are ei ∈ V such
that P =

⋃∞
i=1 Pi where Pi is porous in direction of ei. In case V = X we speak

about σ-directionally porous sets.
Many of our results on L null sets will stem from the obvious fact that if P is

porous in the direction of a vector e ∈ X, then the function f(x) = dist(x, P ) is
not differentiable in the direction of e at any point of P . For the sake of reference,
we record an immediate consequence of this observation for σ-directionally porous
sets.
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1.1. Lemma. Every σ-directionally porous subset of a separable Banach space is
Lipschitz null.

The role of porosity has often turned out to be crucial in obtaining deep results
on differentiability. The reason for this can be seen in the research monograph [29]:
these sets tend to form a subclass of non-differentiability sets that captures the
worst type of local behavior. However, while [29] is mainly concerned with Fréchet
differentiability and the related (ordinary) porosity (in whose definition one allows
the unit vector e to depend on x and ε), here we treat questions related to directional
or Gâteaux differentiability, and so we are concerned with directional porosity.
Because of that our definition of directional porosity is slightly finer than in [29] in
that the directions are oriented. This is a genuine difference, as by an example in
[32] a set porous in the direction of e need not be a countable union of sets porous
in the direction of −e. We will, however, sometimes need to consider the directions
as not oriented. This could be implemented by requiring that the set V in the
definition of σ-V -porosity be symmetric about zero, but we find it more convenient
to speak about σ-(±V )-porosity, where ±V = V ∪ −V and −V = {−v : v ∈ V }.

Notice also that our notion of σ-V -porosity is related to directional differentia-
bility and so differs from the notion of σ-directional porosity in the direction of
V , which has been used to investigate Fréchet differentiability in [29]. However,
the following lemma implies that this difference disappears when V is finite dimen-
sional; it shows that no new notion of (unoriented) σ-porosity would be obtained
had we defined porosity using finite dimensional directions instead of one direction.
Its proof is a modification of the arguments from [41] to our situation.

1.2. Lemma. Suppose that X is a Banach space, U its subspace spanned by a finite
set V , and a set E ⊂ X has the property that for every x ∈ E there is cx > 0 such
that for every δ > 0 one may find u ∈ U and t > 0 such that δ > t > cx‖u‖ and
E ∩B(x+ u, t) = ∅. Then E is σ-(±V )-porous.

Proof. Let v1, . . . , vn be a basis for U chosen from elements of V . We write X as
a direct sum of U and of a closed subspace W , denote the corresponding projec-
tions πU and πW and, noting that the statement does not depend on the choice
of (equivalent) norm, assume that the norm of X is the �1 sum of the norm
‖
∑

i λivi‖ =
∑

i |λi| on U and of the original norm on W . We will also assume
that there is 0 < κ < 1 such that cx > κ for all x ∈ E; clearly E is a countable
union of such sets.

Let 1− 1/n < q < 1 and m ∈ N be such that qm < κ. For y ∈ X and r, s > 0 let

K(y, r, s) = y + {u ∈ U : ‖u‖ < r}+ {w ∈ W : ‖w‖ < s}
and for each i, j = 0, 1, . . . let

Fi,j = E ∩
⋃

{K(y, q−ir, qir) : K(y, r, r) ∩E = ∅, r < 2−j} and

Gi,j =

∞⋂
k=0

Fi,k \ Fi−1,j for i ≥ 1.

Observing that E =
⋂∞

j=0 Fm,j and F0,j = ∅ for each j, we infer that

E =
m⋃
i=1

( ∞⋂
j=0

Fi,j \
∞⋂
j=0

Fi−1,j

)
=

m⋃
i=1

∞⋃
j=1

Gi,j .
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Let c = min
(
q2m−1(1 − q), q − 1 − 1/n

)
. If x ∈ Gi,j and k > j, we find y ∈ X

and 0 < r < 2−k such that K(y, r, r) ∩ E = ∅ and x ∈ K(y, q−ir, qir). We
write πU (y − x) =

∑
i λivi, choose l such that |λl| is maximal, and show that

B(x+ λlvl, c|λl|) ⊂ K(y, q−(i−1)r, q(i−1)r). Indeed, if z ∈ B(x+ λlvl, c|λl|), then

‖πU (z − y)‖ ≤ ‖z − x‖+ ‖πU (x− y)‖ ≤ c|λl|+
∑
i �=l

|λi|

≤ c|λl|+ (1− 1/n)
∑
i

|λi| ≤ cq−i + (1− 1/n)q−i ≤ q−(i−1)

and

‖πW (z − y)‖ ≤ ‖z − x‖+ ‖πW (x− y)‖ ≤ c|λl|+ qir

≤ q2m−1(1− q)q−ir + qir ≤ q(i−1)r.

Using also that r < 2−j and Gi,j ∩ Fi−1,j = ∅, we infer that

Gi,j ∩B(x+ λlvl, c|λl|) ⊂ Gi,j ∩K(y, q−(i−1)r, q(i−1)r) = ∅.

Since the number of possible directions vl is finite, one of them has to occur for
infinitely many k with the same sign of λl, and we conclude that Gi,j is a union of
2n sets each of which is porous in one of the directions ±vl. �

1.3. Corollary. Suppose that X is a separable Banach space and that the linear
span of a set V ⊂ X is dense in X. Then every σ-directionally porous subset of X
is σ-(±V )-porous.

Proof. Let wk ∈ X and E =
⋃

k Ek be such that for every x ∈ Ek there is a
sequence ti ↘ 0 such that B(x + tiwk, ti/k) ∩ Ek = ∅. To prove that Ek is
σ-(±V )-porous it suffices to choose v1, . . . , vn ∈ V and λ1, . . . , λn ∈ R such that
‖wk −

∑
i λivi‖ < 1/(2k), to observe that Ek is porous in the direction of

∑
i λivi

and to use Lemma 1.2. �

Measurabilities, etc. Here we collect several facts about measurable or Lipschitz
dependence of derivatives on variables. We omit their simple standard proofs.

1.4. Lemma. Let f be a real-valued locally Lipschitz function on an open subset G
of a Banach space X. Then

(i) the function (x, v) �→ Df(x, v) is a Borel measurable function on G×X, and
(ii) for every x ∈ X the function v �→ Df(x, v) is Lipschitz; it is K-Lipschitz if f

is K-Lipschitz on a neighborhood of x.

1.5. Lemma. Let Y and Z be Banach spaces, Y separable, and let f be a locally
Lipschitz mapping of an open subset G of Y to Z. Then

(i) the set {(y, v) ∈ G× Y : f ′
+(y; v) exists} is a Borel subset of G× Y ,

(ii) the mapping (y, v) �→ f ′
+(y; v) (whose domain is the set from (i)) is Borel

measurable, and
(iii) for every y ∈ G the set {v ∈ Y : f ′

+(y; v) exists} is closed in Y .

1.6. Corollary. The σ-ideal L is generated by Borel sets; i.e., every N ∈ L is
contained in a Borel set B ∈ L.
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2. Basic notions and results

In this section we deduce crucial estimates of the size of derived sets of Lipschitz
mappings between Banach spaces. These results have quite satisfactory formula-
tion in the finite dimensional case (e.g., Corollary 2.15 and Corollary 2.24), but
their formulation is not obvious in infinite dimensional spaces, partly because the
usual notion of derived sets needs compactness, and we are forced to replace the
study of derived sets by the study of their δ approximating sets. Three main
types of comparison of approximating derived sets are then considered. The sim-
plest one is essentially known and concerns the chain rule in a fixed direction, a
slightly more complicated concerns the comparison of derived sets based on differ-
ent (subdifferential-type) ideas, and the most complicated, and most applicable,
concerns dependence of derived sets on directions.

Derived sets. Suppose that Y and Z are Banach spaces, f : Y �→ Z, and y, v ∈ Y .
The derived set of f at the point y in the direction of v is defined as the set
Df(y, v) of all existing limits limn→∞(f(y + tnv) − f(y))/tn, where tn ↘ 0. The
δ-approximating derived set of f at y in the direction of v is defined, for δ > 0, by

Dδf(y, v) =

{
f(y + tv)− f(y)

t
: 0 < t < δ

}
.

It is easy to see that

(2.1) Df(y, v) =
⋂
δ>0

Dδf(y, v).

Other, from our point of view less important, notions of derived sets have been
usually implicitly considered by a number of authors (see, for example, [10,31,40]).

The first, closest to the previous one, is obtained by defining, for each δ, c > 0
the (δ, c)-approximating Zahorski derived set of f at y in the direction of v by

Zδ,cf(y, v) =

{
f(y + sv + tv)− f(y + sv)

t
: 0 < t < δ, dist(0, [s, s+ t]) < ct

}
.

Similar ideas in multidimensional situations lead to defining for each δ, c > 0 the
(δ, c)-approximating Michel-Penot derived set of f at y in the direction of v by

Pδ,cf(y, v) =

{
f(ŷ + tv)− f(ŷ)

t
: 0 < t < δ, dist(y, [ŷ, ŷ + tv]) < ct‖v‖

}
.

The ideas behind Clarke’s subdifferential provide our last notion of derived sets
by defining, for each δ > 0, the δ-approximating strict (or Clarke-Rockafellar)
derived set of f at y in the direction of v by

Cδf(y, v) =
{
f(ŷ + tv)− f(ŷ)

t
: 0 < t < δ, ‖ŷ − y‖ < δ

}
.

All these notions lead to the notion of corresponding derived sets by formulas
analogous to (2.1):

Zf(y, v) =
⋃
c>0

⋂
δ>0

Zδ,cf(y, v), Pf(y, v) =
⋃
c>0

⋂
δ>0

Pδ,cf(y, v), and

Cf(y, v) =
⋂
δ>0

Cδf(y, v).
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Immediately from the definition we can see how the approximating derived sets
behave when the direction is multiplied by a scalar as well as connections between
various derived sets. We state most of them precisely in the case of Dδ only.

2.1. Lemma. Let f : Y �→ Z and λ, c > 0.

(i) Dδf(y, 0) = {0}.
(ii) Dδf(y, λv) = λDλδf(y, v).
(iii) Dδf(y, v) ⊂ Zδ,cf(y, v) = −Zδ,cf(y,−v).

Proof. Only the last equality in (iii) may need an argument. If 0 < t < δ, then

f(y + sv + tv)− f(y + sv)

t
= −f(y − (s+ t)(−v) + t(−v))− f(y − (s+ t)(−v))

t

and dist(0, [s, s+ t]) < ct is equivalent to dist(0, [−(s+ t),−(s+ t) + t]) < ct. �

We denote by H(Z) the family of non-empty bounded subsets of Z and recall
that the Hausdorff distance of S, T ∈ H(Z) is defined by


(S, T ) = inf{ε > 0 : S ⊂ B(T ; ε) and T ⊂ B(S; ε)},

where B(S; ε) = {z ∈ Z : dist(z, S) < ε}. We also let


+(S, T ) = sup
x∈S

dist(x, T )

and observe that 
(S, T ) = max
(

+(S, T ), 
+(T, S)

)
= 
(T, S).

2.2. Remark. Clearly, if Z is finite dimensional and if f is Lipschitz on a neighbor-
hood of y, the intersection in formula (2.1) may be replaced by the limit of Dδf(y, v)
as δ ↘ 0; analogous observations apply to the definitions of the remaining derived
sets. No comparable statements hold if Z is infinite dimensional.

We will also need the following simple facts.

2.3. Lemma. Suppose that a mapping f of a Banach space Y to a Banach space
Z is K-Lipschitz on a neighborhood of a point y ∈ Y . Then for every R > 0 there
is δ0 such that for every 0 < δ < δ0 and every c > 0,

v �→ Dδf(y, v), v �→ Zδ,cf(y, v), v �→ Pδ,cf(y, v), and v �→ Cδf(y, v)

are K-Lipschitz mappings of {v ∈ Y : ‖v‖ ≤ R} to H(Z) equipped with the Haus-
dorff metric.

Proof. If f isK-Lipschitz on B(y,Δ), we let δ0 = Δ
2(1+R) and infer that if 0 < t < δ0,

‖w‖ ≤ R, and ŷ ∈ B(y, δ0), then

‖(f(ŷ + tw)− f(ŷ))/t− (f(ŷ + tv)− f(ŷ))/t‖ ≤ K ‖w − v‖ ,

which immediately implies the statement. �

2.4. Lemma. Suppose that a mapping f of a Banach space Y to a Banach space Z
is K-Lipschitz on a neighborhood of a point y ∈ Y . Then for every R > 0 there is
δ0 > 0 such that for 0 < δ2 < δ1 < δ0 and ‖v‖ ≤ R we have

ρ(Dδ1f(y, v),Dδ2f(y, v)) ≤ 2K‖v‖δ1 − δ2
δ1

.
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Proof. Choosing δ0 as in the proof of the previous lemma, we see that for any
δ0 > δ1 > t1 ≥ δ2 > t2 > 0,∥∥∥f(y + t1v)− f(y)

t1
− f(y + t2v)− f(y)

t2

∥∥∥
≤

∥∥∥f(y + t1v)− f(y + t2v)

t1

∥∥∥+ ‖f(y + t2v)− f(y)‖
∣∣∣ 1
t1

− 1

t2

∣∣∣
≤ 2K‖v‖ t1 − t2

t1
.

Taking first the infimum over t2 and then the supremum over t1 gives the result. �

Chain rule formula in given direction.

2.5. Proposition. Suppose that X, Y and Z are Banach spaces, that g : X �→ Y
is differentiable at a point x ∈ X in the direction of e ∈ X, and that f : Y �→ Z is
Lipschitz on a neighborhood of g(x). Then

lim
δ↘0


(Dδ(f ◦ g)(x, e),Dδf(g(x), g
′
+(x; e))) = 0.

Proof. Let 0 < K < ∞ and Δ > 0 be such that f is K-Lipschitz on B(g(x),Δ).
For any ε > 0 we find η > 0 such that∥∥g(x+ te)− g(x)− tg′+(x; e)

∥∥ ≤ εt/K

for every 0 < t < η, let κ = min{η,Δ}/(1 +
∥∥g′+(x; e)∥∥), and infer that

‖f(g(x) + tg′+(x; e))− f(g(x))− ((f ◦ g)(x+ te)− (f ◦ g)(x))‖
≤ K

∥∥g(x) + tg′+(x; e)− g(x+ te)
∥∥ ≤ εt

(2.2)

whenever 0 < t < κ. Consequently, if 0 < t < δ < κ, we have that

dist((f(g(x) + tg′+(x; e))− f(g(x)))/t,Dδ(f ◦ g)(x, e)) ≤ ε, and

dist(((f ◦ g)(x+ te)− (f ◦ g)(x))/t,Dδf(g(x), g
′
+(x; e))) ≤ ε,

and we conclude that


(Dδ(f ◦ g)(x, e),Dδf(g(x), g
′
+(x; e))) ≤ ε

if 0 < δ < κ. �

2.6. Corollary. Suppose that g : X �→ Y is differentiable at a point x in the
direction of e and that f : Y �→ Z is Lipschitz on a neighborhood of g(x). Then

D(f ◦ g)(x, e) = Df(g(x), g′+(x; e)).

Proof. By the formula (2.2) from the proof of Proposition 2.5,

lim
t↘0

f(g(x) + tg′+(x; e))− f(g(x))

t
− (f ◦ g)(x+ te)− (f ◦ g)(x)

t
= 0.

�

We note that in the simple example of Lipschitz mappings g : R �→ R
2 and

f : R2 �→ R defined by g(x) = (x, x sin(log |x|)) and f(x, y) = y − x sin(log |x|)
(where we let x sin(log |x|) = 0 for x = 0) we have f ◦ g = 0, (1, 0) ∈ Dg(0, 1), and
1 ∈ Df((0, 0), (1, 0)). So the assumption of existence of g′+(x; e) is necessary for the
ability to find one of the derived sets knowing the other. However, if Y and Z are
finite dimensional and g is Lipschitz on a neighborhood of x, we have at least that



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CHAIN RULE FORMULA FOR LOCALLY LIPSCHITZ FUNCTIONS 4695

D(f ◦ g)(x, e) ⊂
⋃

v∈Dg(x,e) Df(g(x), v), which follows from the following statement

by Remark 2.2.

2.7. Proposition. Suppose that X, Y and Z are Banach spaces, that g : X �→ Y
is such that the sets Dδg(x, e) converge to V ∈ H(Y ) as δ ↘ 0, and that f : Y �→ Z
is Lipschitz on a neighborhood of g(x). Then

lim
δ↘0


+
(
Dδ(f ◦ g)(x, e),

⋃
v∈V Dδf(g(x), v)

)
= 0.

Proof. Let 1 ≤ K < ∞ and Δ > 0 be such that f is K-Lipschitz on B(x,Δ). For
any ε > 0 we find η > 0 such that for every 0 < t < η there is vt ∈ V for which

‖g(x+ te)− g(x)− tvt‖ ≤ εt/K,

let κ = min{η,Δ}/(1 + sup{‖v‖ : v ∈ V }+ ‖e‖), and infer that

‖(f(g(x) + tvt)− f(g(x)))− ((f ◦ g)(x+ te)− (f ◦ g)(x))‖ ≤ εt

whenever 0 < t < κ. Consequently, if 0 < t < δ < κ, we have that

dist
(
((f ◦ g)(x+ te)− (f ◦ g)(x))/t,

⋃
v∈V Dδf(g(x), v)

)
≤ ε,

and we conclude that


+
(
Dδ(f ◦ g)(x, e),

⋃
v∈V Dδf(g(x), v)

)
≤ 2ε

if 0 < δ < κ. �

Comparison of derived sets. We will see in Example 2.17 that in an infinite
dimensional situation the Hausdorff distance (and even the much weaker distance
| diam(S) − diam(T )|) does not have the expected property that Dδf(x,−e) is
often close to −Dδf(x, e). The basic reason behind this is that while in the final
dimensional situation H(Z) equipped with the Hausdorff distance is separable, in
the infinite dimensional situation it is not. For us, a more revealing version of this
observation is that the Hausdorff distance on H(Z) is

(2.3) 
+(S, T ) = sup
ϕ∈Lip1(Z)


ϕ(S, T ),

where Lip1(Z) is the set of real-valued functions ϕ on Z with Lip(ϕ) ≤ 1, and that

(2.4) 
ϕ(S, T ) = sup
z∈S∪T

ϕ(z)− sup
z∈T

ϕ(z),

and that we can restrict the supremum in (2.3) to countably many ϕ ∈ Lip1(Z)
if Z is finite dimensional but cannot do so if it is not. In the following, we avoid
this problem by taking countably many Lipschitz functions ϕ on Z and considering
H(Z) equipped with countably many distances 
ϕ.

Notice that 
ϕ defined by (2.4) should be thought of as a weaker analogue of 
+,

not of 
. In particular, 
ϕ(S, T ) = 0 whenever S ⊂ T and 
ϕ(S0, T ) ≤ 
ϕ(S1, T )
whenever S0 ⊂ S1. One can also define, in the same way as for the Hausdorff
distance, a symmetrized version of this distance as max{
ϕ(T, S), 
ϕ(S, T )}. We,
however, do not do it, since we do not have any genuine use for it.

It is obvious that 
ϕ(S, T ) ≤ 
+(S, T ) and, since

sup
z∈S∪U

ϕ(z)− sup
z∈U

ϕ(z) ≤ sup
z∈S∪T

ϕ(z)− sup
z∈T

ϕ(z) + sup
z∈T∪U

ϕ(z)− sup
z∈U

ϕ(z),

we see that 
ϕ satisfies (the non-symmetric version of) the triangle inequality


ϕ(S,U) ≤ 
ϕ(S, T ) + 
ϕ(T, U).
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As in the use of the distance 
+, where it is often convenient to use the inclusion
S ⊂ B(T ; ε) = {z : dist(z, T ) < ε} instead of the (essentially equivalent) inequality

+(S, T ) < ε, it will often be convenient to denote

ϕ(T ) = sup
z∈T

ϕ(z)

and

Bϕ(T ; ε) = {z ∈ Z : ϕ(z) < ϕ(T ) + ε}
and use S ⊂ Bϕ(T ; ε) instead of the (essentially equivalent) inequality 
ϕ(S, T ) < ε.

Note that (2.3) immediately implies B(T ; ε) ⊂ Bϕ(T ; ε) for any T ∈ H(Z) and
ϕ ∈ Lip1(Z).

2.8. Examples. The following choices of ϕ and the description of the corresponding
sets Bϕ(T ; ε) in a Banach space Z will be used in the following text.

(i) If Q ∈ H(Z) and ϕ(w) = dist(w,Q), then Bϕ(S; ε) = B(Q; 
+(S,Q) + ε).
(ii) If z ∈ Z and ϕ(w) = ‖w − z‖ (which is a special case of (i) with Q = {z}),

then Bϕ(T ; ε) = B(z, rz(T ) + ε), where rz(T ) := inf{r > 0 : T ⊂ B(z, r)} is
the outer radius of T about z.

The set Lip1(Z) will be equipped with the topology of uniform convergence on
bounded sets. Its main use stems from the fact that the distances 
ϕ do not change
much with uniform changes of ϕ, which is recorded in the following lemma.

2.9. Lemma. If ϕ, ψ ∈ Lip1(Z) and S, T ∈ H(Z), then

Bψ(T ; ε) ⊂ Bϕ

(
S; 
ϕ(T, S) + sup

z∈T
|ϕ(z)− ψ(z)|+ ε

)
and


ϕ(S, T ) ≤ 
ψ(S, T ) + 2 sup
z∈S∪T

|ϕ(z)− ψ(z)|.

Proof. The first statement follows by observing that for z ∈ Bψ(T ; ε),

ψ(z) < ψ(T ) + ε ≤ ϕ(T ) + sup
z∈T

|ϕ(z)− ψ(z)|+ ε

≤ ϕ(S) + 
ϕ(T, S) + sup
z∈T

|ϕ(z)− ψ(z)|+ ε,

and the second by estimating


ϕ(S, T ) = sup
z∈S∪T

ϕ(z)− sup
z∈T

ϕ(z) ≤ sup
z∈S∪T

ψ(z)− sup
z∈T

ψ(z) + 2 sup
z∈S∪T

|ϕ(z)− ψ(z)|. �

2.10. Lemma. Suppose a mapping f of a Banach space Y to a Banach space Z is
Lipschitz on a neighborhood of a point y ∈ Y . Then for any c > 0 the sets

{(v, ϕ) ∈ Y × Lip1(Z) : limδ↘0 
ϕ(Zδ,cf(y, v),Dδf(y, v)) = 0},
{(v, ϕ) ∈ Y × Lip1(Z) : limδ↘0 
ϕ(Pδ,cf(y, v),Dδf(y, v)) = 0},

and

{(v, ϕ) ∈ Y × Lip1(Z) : limδ↘0 
ϕ(Cδf(y, v),Dδf(y, v)) = 0}

are closed in Y × Lip1(Z).
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Proof. For small enough δ the sets whose 
ϕ we are limiting all lie in a fixed ball
B(0, r). Hence, metrizing Y × Lip1(Z) by

dist((u, ϕ), (v, ψ)) = ‖u− v‖+ supz∈B(0,r) |ϕ(z)− ψ(z)|,
we see from Lemma 2.3 and Lemma 2.9 that the 
ϕ(·, ·) involved in these lim-
its are Lipschitz as functions of (v, ϕ), with a bound on their Lipschitz constant
independent of δ. The statement follows. �

2.11. Lemma. Suppose that f : Y → Z is a K-Lipschitz mapping between Banach
spaces Y, Z. Suppose further that ϕ ∈ Lip1(Z), v ∈ Y , ε, δ > 0, c ∈ R, and E is
the set of y ∈ Y such that c ≤ ϕ(Dδf(y, v)) < c+ ε/2. If ŷ ∈ Y and 0 < t < δ are

such that ϕ
(f(ŷ+tv)−f(ŷ)

t

)
> c+ ε, then B

(
ŷ, εt

4K

)
∩ E = ∅.

Proof. If x ∈ B
(
ŷ, εt

4K

)
∩ E, we would infer from∥∥∥f(ŷ + tv)− f(ŷ)

t
− f(x+ tv)− f(x)

t

∥∥∥ ≤ 2K ‖x− ŷ‖
t

<
ε

2

that

c+ ε < ϕ
(f(ŷ + tv)− f(ŷ)

t

)
< ϕ

(f(x+ tv)− f(x)

t

)
+

ε

2
< c+ ε. �

2.12. Proposition. Suppose that Y and Z are Banach spaces, V is a separable
subset of Y , and Φ is a separable subset of Lip1(Z). Suppose further that f is a
locally Lipschitz mapping of an open subset G ⊂ Y to Z.

(i) There is a σ-(±V )-directionally porous set PZ ⊂ Y such that

lim
δ↘0


ϕ(Zδ,cf(y, v),Dδf(y, v)) = 0

for every ϕ ∈ Φ, y ∈ G \ PZ , v ∈ V , and c > 0.
(ii) There is a σ-porous set PP ⊂ Y such that

lim
δ↘0


ϕ(Pδ,cf(y, v),Dδf(y, v)) = 0

for every ϕ ∈ Φ, y ∈ G \ PP , v ∈ V , and c > 0.
(iii) There is a meager set PC ⊂ Y such that

lim
δ↘0


ϕ(Cδf(y, v),Dδf(y, v)) = 0

for every ϕ ∈ Φ, y ∈ G \ PC, and v ∈ V .

Proof. We may assume that f is K-Lipschitz on Y = G. Finding countable dense
subsets W ⊂ V and Ψ ⊂ Φ, we infer from Lemma 2.10 that it suffices to prove
the statements with V,Φ replaced by W,Ψ. Hence we may reduce the proof to the
case when V and Φ are countable, and we may reduce it further to the case when
V and Φ are one element sets, since the sets we are interested in are unions of sets
corresponding to the pairs (v, ϕ) ∈ V ×Φ. The same reasoning shows that we may
assume that c > 0 in (i) and (ii) is fixed.

Assume therefore that V = {v}, Φ = {ϕ} and c > 0, and let 0 < ε < 1. For
n = 1, 2, . . . and k = 0,±1,±2, . . . let En,k be the set of those points y ∈ Y
such that kε/2 ≤ ϕ(Dηf(y, v)) < (k + 1)ε/2 for every 0 < η < 1/n. We prove
that Y =

⋃
n,k En,k. Given any y ∈ Y we use that f is Lipschitz to infer that

the function η �→ ϕ(Dηf(y, v)) is bounded. Hence s := lim supη↘0 ϕ(Dηf(y, v)) is
finite, and we may choose k = 0,±1, . . . such that kε/2 ≤ s < (k + 1)ε/2. Finding
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n ∈ N such that ϕ(Dηf(y, v)) < (k + 1)ε/2 for any 0 < η < 1/n and using the
monotonicity of ϕ, we have that kε/2 ≤ s ≤ ϕ(Dηf(y, v)) < (k + 1)ε/2 for all
such η, implying that y ∈ En,k.

(i) Let

Pn,k = {y ∈ En,k : lim supδ↘0 
ϕ(Zδ,cf(y, v),Dδf(y, v)) > ε}.

If y ∈ Pn,k, there are arbitrarily small 0 < δ < 1/n for which one may find 0 < t < δ
and s ∈ R such that dist(y, [y + sv, y + sv + tv]) < ct‖v‖ and

ϕ
(f(y + sv + tv)− f(y + sv)

t

)
> ϕ(Dδf(y, v)) + ε ≥ k

ε

2
+ ε.

Hence Lemma 2.11 with ŷ = y + sv implies that B(y + sv, εt/(4K)) ∩ Pn,k = ∅.
Since ‖sv‖ ≤ dist(y, [y + sv, y + sv + tv]) + ‖tv‖ ≤ (c + 1)t ‖v‖, we infer that
B(y+ sv, εs/(4(c+ 1)K))∩Pn,k = ∅, which means that the set Pn,k is porous at y
in the direction of v or −v, where the sign depends on whether s was positive for
arbitrarily small δ or not.

(ii) Let

Pn,k = {y ∈ En,k : lim supδ↘0 
ϕ(Pδ,cf(y, v),Dδf(y, v)) > ε}.

If y ∈ Pn,k, there are arbitrarily small 0 < δ < 1/n for which one may find 0 < t < δ
and ŷ ∈ Y such that dist(y, [ŷ, ŷ + tv]) < ct‖v‖ and

ϕ
(f(ŷ + tv)− f(ŷ)

t

)
> ϕ(Dδf(y, v)) + ε ≥ k

ε

2
+ ε.

Since ‖ŷ − y‖ ≤ dist(y, [ŷ, ŷ + tv]) + ‖tv‖ ≤ (c + 1)t ‖v‖ and Lemma 2.11 implies
that B(ŷ, εt/(4K)) ∩ Pn,k = ∅, the set Pn,k is porous at y.

(iii) Let

Pn,k = {y ∈ En,k : lim supδ↘0 
ϕ(Cδf(y, v),Dδf(y, v)) > ε}.

If y ∈ Pn,k, there are arbitrarily small 0 < δ < 1/n for which one may find 0 < t < δ
and ŷ ∈ Y such that ‖y − ŷ‖ < δ and

ϕ
(f(ŷ + tv)− f(ŷ)

t

)
> ϕ(Dδf(y, v)) + ε ≥ k

ε

2
+ ε.

Then Lemma 2.11 implies B(ŷ, εt/(4K)) ∩ Pn,k = ∅, which means that y does not
belong to the interior of the closure of Pn,k. �

2.13. Corollary. Let f be a locally Lipschitz mapping of an open subset G of a
Banach space Y to a separable Banach space Z and let V ⊂ Y be separable. Then
there is a σ-(±V )-porous set P ⊂ Y such that for every y ∈ Y \ P and v ∈ V ,

lim
δ↘0

diam(Dδf(y,−v)) ≤ 2 lim
δ↘0

diam(Dδf(y, v)).

Proof. Let P ⊂ Y be the σ-(V ∪ −V )-directionally porous set obtained by the
use of Proposition 2.12(i) with Φ consisting of functions ϕz(w) = ‖w − z‖, where
z ∈ Z. Denote c = limδ↘0 diam(Dδf(y, v)). Given y ∈ Y \ P and ε > 0, find
δ0 > 0 such that diam(Dδf(y, v)) < c + ε for every 0 < δ ≤ δ0 and pick any
z ∈ Dδ0f(y, v). Using that Dδf(y,−v) ⊂ Zδ,1f(y,−v) = −Zδ,1f(y, v) and that
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Bϕz
(Dδf(y, v); ε) ⊂ B(z, c+ 2ε) for δ ≤ δ0, we estimate

lim
δ↘0

diam(Dδf(y,−v)) ≤ lim
δ↘0

diam(Zδ,1f(y, v))

≤ lim sup
δ↘0

diam(Bϕz
(Dδf(y, v); ε)) ≤ 2c+ 4ε. �

2.14. Corollary. Let f be a locally Lipschitz mapping of an open subset G of a
Banach space Y to a separable Banach space Z and let V ⊂ Y be separable. Then
the set of those points y ∈ G for which there is a direction of v ∈ V at which f is
unilaterally but not bilaterally differentiable is σ-(V ∪ −V )-porous.

Proof. Since existence of f ′(y; v) is equivalent to limδ↘0 diam(Dδf(y, v)) = 0, this
follows from Corollary 2.13. �

2.15. Corollary. Suppose that Y is a separable Banach space and that f is a locally
Lipschitz mapping of an open subset G ⊂ Y to a finite dimensional space Z.

(i) There is a σ-directionally porous set PZ ⊂ Y such that Zf(y, v) = Df(y, v)
for every y ∈ G \ PZ and every v ∈ Y .

(ii) There is a σ-porous set PP ⊂ Y such that Pf(y, v) = Df(y, v) for every
y ∈ G \ PP and every v ∈ Y .

(iii) There is a meager set PC ⊂ Y such that Cf(y, v) = Df(y, v) for every
y ∈ G \ PC and every v ∈ Y .

Proof. Since Z is finite dimensional, we may use Proposition 2.12 with Φ = Lip1(Z).
Thus, to prove (i), we use Proposition 2.12(i) to infer that there is a σ-directionally
porous set PZ ⊂ Y such that

limδ↘0 
ϕ(Zδ,cf(y, v),Dδf(y, v)) = 0

for every ϕ ∈ Φ, y ∈ G \ PZ , v ∈ V , and every c > 0. Using this with ϕ(z) =
dist(z,Df(y, v)), we immediately infer (i). The proofs of the remaining statements
are similar. �

We have already seen in Corollary 2.13 that the approximating derived sets enjoy
good, but not perfect, symmetry properties. If the range is finite dimensional,
Corollary 2.15 (i) gives a better result, namely that the derived sets are symmetric.

2.16. Corollary. Let f be a locally Lipschitz mapping of an open subset G of a
separable Banach space Y to a finite dimensional space Z. Then there is a σ-
directionally porous set P ⊂ Y such that Df(y, v) = −Df(y,−v) for every y ∈ G\P
and every v ∈ Y .

2.17. Example. The need for replacing the Hausdorff distance by weaker distances
is illustrated by an example of a Lipschitz mapping f : R �→ �∞(R) such that for
every y ∈ R,

(2.5) limδ↘0 diam(Dδf(y,−1)) ≤ 1 < 2 ≤ limδ↘0 diam(Dδf(y, 1)).

Notice that this example does not use non-separability of �∞, since �∞ may be
replaced by the separable space spanned by the range of f . In particular, this
example also shows that the constant 2 in Corollary 2.13 cannot be improved.

To construct f , we first define g : R → R by g(x) = x sin(ϕ(x)) where ϕ : R → R

is continuously differentiable on (0,∞) and such that ϕ(x) = 0 if x ≤ 0 or x ≥ 1,
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and ϕ(x) = 2
√
log(1/x) if 0 < x < 1/e. It is obvious that g is a bounded Lipschitz

function and that Dδg(0, 1) contains both values 1 and −1, thus

(2.6) limδ↘0 diam(Dδg(0, 1)) ≥ 2.

We show that

(2.7) limδ↘0 supx∈R diam(Dδg(x,−1)) ≤ 1.

Clearly, it suffices to consider x ≥ 0 only. Given 0 < ε < 1, we use uniform

continuity of g′ on [ 12e
−1/ε2 ,∞) to find 0 < δ < 1

2e
−1/ε2 so that |g′(x)− g′(y)| < ε

if x, y ≥ 1
2e

−1/ε2 and |x − y| < δ. Consider first the case when x ≥ e−1/ε2 . Then
for any x− δ < y < x the mean value theorem provides y < ξ < x such that

|(g(y)− g(x))/(y − x)− g′(x)| = |g′(ξ)− g′(x)| < ε,

so all values of (g(y)−g(x))/(y−x), y < x belong to the interval [g′(x)−ε, g′(x)+ε]

of length 2ε. In the case when 0 < x < e−1/ε2 we distinguish two possibilities. If
0 < y < x, we get

|(g(y)− g(x))/(y − x)− g(x)/x| = |y(sin(ϕ(y))− sin(ϕ(x)))/(y − x)|
≤ |y(ϕ(y)− ϕ(x))/(y − x)|
≤ y|ϕ′(y)| = 1/

√
log(1/y) < ε.

Finally, if y ≤ 0, (g(y) − g(x))/(y − x) = g(x)/(x − y) belongs to the interval
with end points 0 and g(x)/x. Together, the two cases show that all values of
(g(y) − g(x))/(y − x), y < x, belong to the smallest interval containing 0 and
g(x)/x± ε, whose maximal possible length is 1 + 2ε.

Having proved (2.7), we denote gu(x) = g(u + x) and define f : R → �∞(R)
by f(u) = gu, u ∈ R. Since ‖gu − gv‖∞ ≤ Lip(g)|u − v|, f is Lipschitz. The xth
coordinate of an element from Dδf(y,−1) belongs to Dδg(y + x,−1), and so the
inequality (2.7) implies the first inequality in (2.5). For the last inequality in (2.5)
we notice that x = (−y)th coordinates of elements from Dδf(y, 1) run through
whole Dδg(0, 1) and use inequality (2.6).

Exactness of porosity descriptions. We show that the main results describing
the size of the sets of points at which derived sets may differ are exact. For the
case of the strict or Michel-Penot derived set these are variants of existing relatively
simple constructions, and although we will present them, we will treat them briefly
and not always in the optimal way. For the Zahorski derived sets our results are
new, and the arguments are substantially more involved; we therefore handle this
case in detail.

A predecessor of these results, which is a special case of Theorem 2.20(ii), is
that for every σ-porous set P there is a Lipschitz function that is not Fréchet
differentiable at any point of P ; see [29, Theorem 3.4.3]. In fact, our argument
for 2.20(ii) differs from theirs only slightly. Also, [29, Remark 3.4.4] indicates an
argument showing a special case of Theorem 2.20(i) that for every σ-directionally
porous set P there is a Lipschitz function that is not Gâteaux differentiable at
any point of P . The argument in [29, Remark 3.4.4] is not completely clear, since
it effectively reduces the complement of a set to a disjoint union of balls, and
this may not preserve directional porosity. However, we may slightly modify it



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CHAIN RULE FORMULA FOR LOCALLY LIPSCHITZ FUNCTIONS 4701

in the following way. Write P as a union of directionally porous sets Pk, deduce
from [6, Theorem 7] or [24] that there are Lipschitz gk : X → [0, 1] such that
min(1, dist(x, Pk)) ≤ gk(x) ≤ 2min(1, dist(x, Pk)) and gk is Gâteaux differentiable
on the complement of Pk. Now observe that the method of proof of [29, Theorem
3.4.3] shows that g :=

∑
k ckgk, where ck > 0 are sufficiently small constants, is

Lipschitz and Gâteaux non-differentiable at any point of P . Incidentally, if X∗ is
separable, which is the main case of the proof of [29, Theorem 3.4.3], we may use
[20] (or [22, Corollary 19]) to replace in the above argument Gâteaux by Fréchet,
thereby providing an alternative proof of this result.

Before continuing, we should remind ourselves that σ-porous sets need not be
σ-directionally porous and that meager sets need not be σ-porous. Indeed, for
the latter consider any meager set on the line whose complement is Lebesgue null,
and for the former recall that in any infinite dimensional separable Banach space
there is a σ-porous set whose complement is null on every line; see [36, Theorem 1]
of [4, Theorem 6.39].

As a technical tool, we will use the following notions and results. A function
f : Y → R is called uniformly Gâteaux differentiable if it is Gâteaux differentiable
on G and for every u ∈ Y the convergence of (f(y + tu) − f(y))/t to f ′(y)(u) is
uniform in y ∈ Y . By a result of [24], for any closed set F ⊂ Y and r, ε > 0 there is a
uniformly Gâteaux differentiable f : Y → [0, 1] such that Lip(f) ≤ ε+1/r, f(x) = 1
for x ∈ F , and f(x) = 0 if dist(x, F ) ≥ r. The function f is called regularly Gâteaux
differentiable at y if it is Gâteaux differentiable at y and Pf(y, u) = f ′(y)(u) for
every u ∈ Y . It is immediate that a continuous uniformly Gâteaux differentiable
function is regularly Gâteaux differentiable at every point and that the function
x → dist(x, P ) is regularly Gâteaux differentiable at every point of P that is not a
porosity point of P .

2.18. Lemma. Let P ⊂ Q be closed subsets of a Banach space Y and u ∈ Y . There
are a function h : Y → [0,∞) and a closed set Q̃ ⊃ spt(h) such that

(i) 0 ≤ h(x) ≤ min(1, dist(x,Q)) ≤ min(1, dist(x, P ));
(ii) Lip(h) ≤ 120;
(iii) h is regularly Gâteaux differentiable at every point of Y \ P ;

(iv) Q ∩ Q̃ ⊂ P ;
(v) whenever y ∈ P and Q is porous at y in the direction of some vector v ∈ Y ,

then Q̃ ∪Q is porous at y in the direction of v as well;
(vi) whenever y ∈ P and Q is porous at y in the direction of the vector u, then

there are c > 0 and ti ↘ 0 such that y + tiu + ctiu, y + tiu ∈ Q̃ \ Q and

lim infi→∞
h(y+tiu+ctiu)−h(y+tiu)

cti
≥ 10‖u‖.

Proof. We assume that ‖u‖ = 1, find u∗ ∈ Y ∗ with ‖u∗‖ = u∗(u) = 1, let κ = 5
6 ,

ηj =
1
3 (κ

j − κj+1) and rj =
1
8ηj , and for i ∈ Z and j ∈ N denote

Pi,j = {y ∈ Y : u∗(y) = iηj , κ
j − ηj ≤ dist(y,Q) ≤ κj + ηj , dist(y, P ) ≤ κj/2}.

We observe that Pi,j are closed sets and dist(Pi,j , Pk,l) ≥ max(ηj , ηl) for (i, j) �=
(k, l). Indeed, if l = j the u∗ images of these two sets are at least ηj apart, and if
l > j, then dist(y,Q) ≤ κl+ηl ≤ κj+1+ηj for every y ∈ Pk,l and dist(z,Q) ≥ κj−ηj
for every z ∈ Pi,j . Hence the distance of Pi,j and Pk,l is at least κ

j−κj+1−2ηj = ηj .
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Denote by I the set of pairs (i, j) for which Pi,j �= ∅. For every (i, j) ∈ I denote
Bi,j = {y : dist(y, Pi,j) ≤ 2rj} and choose a uniformly Gâteaux differentiable
function hi,j : Y → R such that 0 ≤ hi,j ≤ κj+1, hi,j(y) = κj+1 for y ∈ Pi,j ,
hi,j(y) = 0 when dist(y, Pi,j) ≥ 2rj and Lip(hi,j) ≤ κj+1/rj = 24κ/(1− κ) = 120.

Define h =
∑

(i,j)∈I hi,j and Q̃ = P ∪
⋃

i,j∈I Bi,j . Notice that

dist(Bi,j , Bk,l) ≥ dist(Pi,j , Pk,l)− 2(rj + rl) ≥ 1
2 (ηj + ηl)− 2(rj + rl) = 2(rj + rl)

whenever (i, j) �= (k, l). Since Bi,j ⊂ {y, dist(y, P ) ≤ κj/2 + 2rj} are closed sets,
this implies that every point of Y \ P has a neighborhood meeting at most one of
the sets Bi,j . Recalling that spt(hi,j) ⊂ Bi,j and that hi,j(x) ≤ κj+1 ≤ κj − ηj ≤
dist(x,Q) ≤ dist(x, P ) for x ∈ Bi,j , we get (i)–(iv).

To prove (v), let Q be porous at y ∈ P in the direction of a unit vector v with
constant 0 < c ≤ 1. Let α > 0 be so small that α(κj + ηj + 2rj) < (1 − α)rj for

every j. We show that Q̃∪Q is porous at y in the direction of v with constant αc.
Consider any t > 0 such that ct ≤ dist(y + tv,Q) ≤ t. If dist(y + tv, Q̃) ≥ αct, we
are done, so suppose

dist(y + tv, Q̃ \Q) = dist(y + tv, Q̃) < αct.

Then there are i, j such that (i, j) ∈ I and dist(y + tv, Pi,j) < 2rj + αct. Since
ct ≤ dist(y+tv,Q) ≤ κj+ηj+2rj+αct, we get (1−α)ct ≤ κj+ηj+2rj . Therefore
αct < α(κj + ηj + 2rj)/(1 − α) < rj and so dist(y + tv, Pi,j) < 3rj . Since y ∈ Q,
dist(y, Pi,j) ≥ κj−ηj > 3rj , and so there is 0 < s ≤ t so that dist(y+sv, Pi,j) = 3rj .
Then every z with dist(z, y+sv) < rj satisfies 2rj < dist(z, Pi,j) < 4rj . For (k, l) �=
(i, j) we have dist(z, Pk,l) ≥ dist(Pi,j , Pk,l)−4rj ≥ 1

2ηl > 2rl. This means z �∈ Q̃\Q.
As dist(z,Q) ≥ dist(Pi,j , Q) − dist(y + sv, Pi,j) − rj = dist(Pi,j , Q) − 4rj > 0, we

get z /∈ Q. It follows that dist(y + sv, Q̃) ≥ rj > αcs.
To prove (vi), let Q be porous at y ∈ P in the direction of u and find c0 > 0 and

sk ↘ 0 so that B(y + sku, c0sk) ∩ Q = ∅. Let j0 ∈ N be such that κj0/2−1 < c0
and fix for a while an index k with sk < κj0 . Let j = j(k) ∈ N be such that
κj ≤ dist(y + sku,Q) < κj−1. Then j > j0, so we have κj/2−1sk < c0sk < κj−1.
Find s̃k ∈ (0, sk] such that dist(y+s̃ku,Q) = κj and observe that this choice implies
κj ≤ s̃k ≤ sk < κj−1/c0 < κj/2. Choose the largest t̃k ≤ s̃k so that u∗(y + t̃ku) is
an integer multiple of ηj . Then s̃k ≥ t̃k ≥ s̃k − ηj ≥ κj − ηj > 2

3κ
j . In particular,

dist(y + t̃ku, P ) ≤ sk < κj/2, from which we see that y + t̃ku ∈ Pi,j for some
i = i(j, k) = i(k) ∈ Z. We also recall that this implies h(y + t̃ku) = κj+1.

We let tk = t̃k − 2rj and show that h(y + tku) = 0. For this, first recall that on
Pi,j , u

∗ is identically equal to iηj . Since u
∗(y+tku) = iηj−2rj = iηj−ηj/4, we infer

from y+ t̃ku ∈ Pi,j that 2rj ≥ dist(y+ tku, Pi,j) ≥ dist(u∗(y+ tku), u
∗(Pi,j)) = 2rj .

Consequently, hi,j(y + tku) = 0. For (i′, j′) different from (i, j) we have

dist(y + tku, Pi′,j′) ≥ dist(Pi′,j′ , Pi,j)− 2rj ≥ max(η′j , ηj)− 2rj ≥ 2r′j

and so hi′,j′(y + tku) = 0 as well. Hence h(y + tku) = 0 and consequently

h(y + tku+ 2rju)− h(y + tku)

2rj
=

h(y + t̃ku)− h(y + tku)

2rj
=

κj+1

2rj
= 60.

Letting ck := 2rj/tk and using that h is Lipschitz, we see that (vi) holds provided
a subsequence of ck converges to some c > 0. But for this it suffices to observe that
ck ≥ 2rj/sk ≥ c0

1
4ηj/κ

j−1 = 1
12c0κ(1− κ) and ck ≤ 2rj/(s̃k − ηj − 2rj) ≤ 1. �
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2.19. Proposition. Let P be a closed subset of a Banach space Y . Then for any
u1, u2, · · · ∈ Y there is a Lipschitz function g : Y → [0,∞) such that

(i) 0 ≤ g(x) ≤ min(1, dist(x, P ));
(ii) g is regularly Gâteaux differentiable at every point of Y \ P ;
(iii) whenever P is porous at a point y ∈ P in the direction of ui, there are c > 0

and tk ↘ 0 such that lim infk→∞
g(y+tkui+ctkui)−g(y+tkui)

ctk
≥ 4‖ui‖;

(iv) whenever P is porous at a point y ∈ P and u ∈ Y , there are c > 0, yk → y

and tk > c‖yk − y‖ such that tk ↘ 0 and lim infk→∞
g(yk+tku)−g(yk)

tk
≥ 4‖u‖;

(v) whenever y ∈ P is not an interior point of P and u ∈ Y , there are yk → y

and tk ↘ 0 such that lim infk→∞
g(yk+tku)−g(yk)

tk
≥ 4‖u‖.

Proof. Apply the 5r-covering theorem to the family of balls B(x, r(x)), x ∈ Y \ P ,
where r(x) = 1

6 min(1, dist(x, P )) to find disjoint balls B(xi, r(xi)) such that for
every x ∈ Y \ P there is i with B(x, r(x)) ⊂ B(xi, 5r(xi)). Let

Q0 = Y \
⋃
i

B(xi,
1
2r(xi)).

Clearly, P ⊂ Q0. We observe that for every x ∈ Y \ P , B(x, 13r(x)) meets at

most one of the balls B(xi,
1
2r(xi)). Indeed, if B(x, 1

3r(x)) ∩ B(xj ,
1
2r(xj)) �= ∅,

then, as follows from the definition of r(x), we necessarily have 2r(x) ≤ 1
3r(x) +

1
2r(xj) + 2r(xj), implying r(x) ≤ 3

2r(xj) and B(x, 1
3r(x)) ⊂ B(xj , r(xj)). Hence j

is unique by the disjointness of B(xi, r(xi)).
We show that for every x ∈ P and y ∈ Y \ P there is z ∈ (x, y] so that

B(z, 1
5r(y)) ∩ Q0 = ∅. For this, assume that B(y, 1

3r(y)) ∩ B(xj ,
1
2r(xj)) �= ∅

for some j, infer from 2r(y) ≤ 1
3r(y) +

5
2r(xj) that r(y) ≤ 3

2r(xj) and so that
‖y − xj‖ ≤ r(xj) and, using that ‖x − xj‖ ≥ 2r(xj), find z ∈ (x, y] so that
‖z−xj‖ = 3

2r(xj). Hence B(z, 1
2r(xj))∩Q0 = ∅, and the claim follows by recalling

that 1
3r(y) ≤

1
2r(xj). Notice that this implies that porosity points of P are porosity

points of Q0, directional porosity points of P are directional porosity points of Q0 in
the same directions, and non-interior points of P remain non-interior points of Q0.

We finish the starting part of the construction by choosing a Lipschitz, uniformly
Gâteaux differentiable function ϕ : Y → [0, 1] such that ϕ(0) = 1 and ϕ(y) = 0 for
‖y‖ ≥ 1, and defining h0(x) =

∑
j

1
4r(xj)ϕ(16(x− xj)/r(xj)).

Letting Q̃0 = Q0, we recursively define for k = 1, 2, . . . closed setsQk and Q̃k and
functions hk : Y → R by letting first Qk = Qk−1 ∪ Q̃k−1 ∪ {x : dist(x, P ) ≥ 2−k−1}
and then using Lemma 2.18 with the sets P,Qk and the vector uk to define the
set Q̃k and the function hk.

Observing that Lemma 2.18(i) implies that 0 ≤ hk ≤ 2−k−1, we see that the
function g :=

∑∞
k=0 hk is well-defined and 0 ≤ g ≤ 1. Moreover, each hk is zero

on P and the sets spt(hk) \ P are disjoint. As a consequence of this we see that
(i) and (ii) hold and that g is Lipschitz with constant bounded by 120 on every
segment contained in Y \ P . The last fact together with the already proved (i)
shows that Lip(g) ≤ 120.

Let P be porous at y ∈ P in the direction of uj . Use Lemma 2.18(vi) to find

c > 0 and tk ↘ 0 such that y + tkuj + ctkuj , y + tkuj ∈ Q̃j \Qj and

lim inf
k→∞

hj(y + tkuj + ctkuj)− hj(y + tkuj)

ctk
≥ 4‖uj‖.
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Since g(y + tkuj + ctkuj) = hj(y + tkuj + ctkuj) and g(y + tkuj) = hj(y + tkuj),
we conclude that

lim inf
k→∞

g(y + tkuj + ctkuj)− g(y + tkuj)

ctk
≥ 4‖uj‖.

This proves (iii).
To prove (iv) and (v), consider any u ∈ Y \ {0} and any sequence zk ∈ Y \ P

such that zk → y ∈ P . Find ik so that B(zk, r(zk)) ⊂ B(xik , 5r(xik)) and let

yk = xik − tku where tk =
r(xik

)

16‖u‖ . Then 6r(xik) ≤ ‖xik −y‖ ≤ 5r(xik)+‖zk−y‖, so
0 < r(xik) ≤ ‖zk − y‖ and ‖xik − y‖ ≤ 6‖zk − y‖. Since g(yk + tku) = h0(yk + tku)
and g(yk) = h0(yk), we conclude that yk → y, tk ↘ 0 and

lim inf
k→∞

g(yk + tku)− g(yk)

tk
= lim inf

k→∞

h0(yk + tku)− h0(yk)

tk
=

r(xik)

4tk
= 4‖u‖.

This proves (v). For (iv) we choose the sequence zk so that r(zk) > c0‖zk − y‖.
Then, using 5r(xik) ≥ r(zk) ≥ c0‖zk − y‖ and letting C = ‖u‖(1 + 80 + 80/c0),

‖yk − y‖ ≤ tk‖u‖+ ‖xik − zk‖+ ‖zk − y‖ ≤ tk‖u‖+ 5r(xik) + 5r(xik)/c0 = Ctk.

Hence (iv) holds with any 0 < c < 1/C. �

It is now straightforward to combine the functions gk obtained by using the
above result with a sequence of sets Pk to get functions with irregular behavior
on a prescribed σ-directionally porous, σ-porous or meager set. In the following
theorem we therefore state only the main such result. However, several additional
observations about the function we construct in Theorem 2.20(ii) may be useful: it
is Gâteaux differentiable at every point of P with the exception of those belonging to
a σ-directionally porous set Pd ⊂ P , for every point y ∈ Pd of which there is v ∈ V
with Zf(y, v) �= Df(y, v) and at every point of P \ Pd the function f is irregularly
differentiable in every direction in the sense used in [29]. This shows that it would
not make sense to improve the sufficient condition for Γ-almost everywhere Fréchet
differentiability results, namely the Γ-nullness of porous sets, to Γ-nullness of the
sets of points of irregular differentiability, although the latter is what is actually
used in [28] and [29].

2.20. Theorem. Let P be a subset of a separable Banach space Y .

(i) If P is σ-directionally porous, there is a Lipschitz f : Y → R such that for
every y ∈ P there is v ∈ V with Zf(y, v) �= Df(y, v).

(ii) If P is σ-porous, there is a Lipschitz f : Y → R such that Pf(y, v) �= Df(y, v)
for every y ∈ P and v ∈ Y \ {0}.

(iii) If P is meager, then there is a Lipschitz f : Y → R such that Cf(y, v) �=
Df(y, v) for every y ∈ P and v ∈ Y \ {0}.

Proof. Let u1, u2, . . . be a sequence of unit vectors dense in the unit sphere of Y .
(i) Write P =

⋃∞
k=1 Pk where Pk is porous in the direction of uk. Let gk be the

functions constructed in Proposition 2.19 with P = Pk. Choose 0 < λk ≤ 2−k

so that for every j, λj ≥
∑∞

k=j+1 λkLip(gk). The functions fj =
∑∞

k=j λkgk are
clearly well-defined and Lipschitz.

Given y ∈ P find the least j for which there is i such that y ∈ Pj and Pj is
porous at y in the direction of ui. By Proposition 2.19(iii) find c > 0 and tk ↘ 0
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such that lim infk→∞
gj(y+tkui+ctkui)−gj(y+tkui)

ctk
≥ 4. Then

lim inf
k→∞

fj(y + tkui + ctkui)− fj(y + tkui)

ctk
≥ 4λj −

∞∑
k=j+1

λkLip(gk) ≥ 3λj

and by Proposition 2.19(i)

lim sup
t→0

fj(y + tui)− fj(y)

t
≤ λj +

∞∑
k=j+1

λkLip(gk) ≤ 2λj .

If k < j and y ∈ Pk, Proposition 2.19(i) implies that gk is differentiable at y in the
direction of ui, and if y /∈ Pk, the same conclusion follows from Proposition 2.19(ii).
Hence the statement holds with f = f1.

(ii) Write P =
⋃∞

k=1 Pk where Pk are porous and define gk, λk and fk as in (i).
Given y ∈ P find the least j such that y ∈ Pj and Pj is porous at y. For every v ∈ Y \
{0} replace y+ tkui in the above argument by the yk from Proposition 2.19(iv) and
ui by v to infer that Pfj(y, v) �= Dfj(y, v). If k < j and y ∈ Pk, Proposition 2.19(i)
implies that gk is regularly Gâteaux differentiable at y, and if y /∈ Pk, the same
conclusion follows from Proposition 2.19(ii). Hence the statement holds with f =
f1.

(iii) The argument is similar to the previous ones and can be omitted. �
Subadditivity of derived sets. Though we postpone the case of one dimensional
range to the next section, we should remark that it is now easy to deduce from
Proposition 2.12(iii) or from Corollary 2.15(iii) the result of [21] on generic convexity
of upper derivative; indeed one can improve it by using Proposition 2.12(ii) or
Corollary 2.15(ii) to a result on convexity of upper derivatives with a σ-porous
exceptional set. However, even this improvement is not sufficient to obtain useful
information about derivatives of composite functions, and we need a considerable
refinement of our previous results to achieve this. As in the previous part of our
study, the Hausdorff distance is too fine for our purpose (see Example 2.25), and we
will continue using the idea behind the distances 
ϕ introduced above. However,
even they become too coarse for our purpose, and we will therefore state the result
using the neighborhoods Bϕ(S; ε).

2.21. Lemma. Let f : Y → Z be a K-Lipschitz map between separable Banach
spaces Y and Z, u, v ∈ Y , ϕ ∈ Lip1(Z) and ε > 0. Then there is a σ-u-porous set
P ⊂ Y such that for every y ∈ Y \ P the inclusion

(2.8) Dδf(y, u+ v) ⊂ Dδf(y, u) +Bϕ(Dδf(y, v); ε)

holds for all sufficiently small δ > 0.

Proof. Since the function δ → ϕ(Dδf(y, v)) is bounded and monotonic, for every
y ∈ Y there are rational numbers c, τ > 0 such that c ≤ ϕ(Dδf(y, v)) < c + ε/2
for every 0 < δ < τ . Let Pc,τ be the set of y ∈ Y that have this property and for
which (2.8) fails for arbitrarily small δ.

It suffices to show that each Pc,τ is porous in the direction of u. For this, consider
any y ∈ Pc,τ and, given any 0 < δ < τ for which (2.8) fails, find 0 < t < δ with

(f(y + t(u+ v))− f(y))/t /∈ Dδf(y, u) +Bϕ(Dδf(y, v); ε).

Since (f(y + tu)− f(y))/t ∈ Dδf(y, u), we infer that

(f(y + tu+ tv)− f(y + tu))/t /∈ Bϕ(Dδf(y, v); ε).
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Observing that Pc,τ is contained in the set E from Lemma 2.11, we use this lemma
with ŷ = y + tu to infer that B(y + tu, εt/(4K)) ∩ Pc,τ = ∅. It follows that Pc,τ is
porous at y in the direction of u, as needed. �

2.22. Proposition. Suppose that Y and Z are separable Banach spaces and that
Φ ⊂ Lip1(Z) is separable. Suppose further that V and W are subsets of Y and that
f is a locally Lipschitz mapping of an open subset G of Y to Z. Then there is a
σ-V -directionally porous set P ⊂ Y such that for every ϕ ∈ Φ, ε > 0, y ∈ G \ P ,
v ∈ V , and w ∈ W one may find δ0 > 0 such that

Dδf(y, v + w) ⊂ Dδf(y, v) +Bϕ(Dδf(y, w); ε)

for every 0 < δ < δ0.

Proof. As explained in the introduction, we may assume that f is K-Lipschitz
on Y . Choose countable dense sets V1 ⊂ V , W1 ⊂ W , and Φ1 ⊂ Φ. Fix ε > 0
and for v1 ∈ V1, w1 ∈ W1, and ϕ1 ∈ Φ1 let Pv1,w1,ϕ1

be the σ-v1-porous sets from
Lemma 2.21 used with ε replaced by τ := ε/7. We show that the statement holds
with P =

⋃
v1∈V1,w1∈W1,ϕ1∈Φ1

Pv1,w1,ϕ1
, which is clearly a σ-V -porous set.

Let y /∈ P , v ∈ V , w ∈ W , and ϕ ∈ Φ. Find v1 ∈ V1, w1 ∈ W1 and ϕ1 ∈ Φ1 such
that ‖v − v1‖ < τ/K, ‖w − w1‖ < τ/K, and supz∈B(0,K) |ϕ(z) − ϕ1(z)| < τ . By
Lemmas 2.3 and 2.9,

Dδf(y, v + w) ⊂ B
(
Dδf(y, v1 + w1); 2τ

)
⊂ B

(
Dδf(y, v1) +Bϕ1

(Dδf(y, w1); τ ); 2τ
)

⊂ B
(
B(Dδf(y, v); τ ) +Bϕ1

(Dδf(y, w); 2τ ); 2τ
)

⊂ Dδf(y, v) +B(Bϕ1
(Dδf(y, w); 4τ ); 3τ

)
⊂ Dδf(y, v) +Bϕ(Dδf(y, w); 7τ ). �

2.23. Corollary. Suppose that X, Y , Z are separable Banach spaces, Φ ⊂ Lip1(Z)
is separable, V ⊂ X and W ⊂ Y . If g : X �→ Y and f : Y �→ Z are locally Lipschitz
mappings, then there is a σ-V -directionally porous set P ⊂ X such that for every
ϕ ∈ Φ, ε > 0, x ∈ X \ P , w ∈ W , and for every direction of v ∈ V for which
g′+(x; v) exists there is δ0 such that

Dδf(g(x), g
′
+(x; v) + w) ⊂ Dδf(g(x), g

′
+(x; v)) +Bϕ(Dδf(g(x), w); ε)

whenever 0 < δ < δ0.

Proof. Let g̃ : X ⊕ Y �→ Y be defined by g̃(x ⊕ y) = g(x) + y, and let h = f ◦ g̃.
We now treat V and W as subsets of X ⊕ {0} and {0} ⊕ Y respectively. Using
Proposition 2.22, we find a σ-V -directionally porous set Q ⊂ X ⊕ Y such that for
every ϕ ∈ Φ, ε > 0, x⊕ y ∈ X ⊕ Y \Q, v ∈ V , and w ∈ W one may find δ1 > 0 for
which

Dδh(x⊕ y, v ⊕ w) ⊂ Dδh(x⊕ y, v) +Bϕ(Dδh(x⊕ y, w); ε/2)

for every 0 < δ < δ1.
Note that P = {x ∈ X : x⊕0 ∈ Q} = Q∩X is a σ-V -directionally porous subset

of X. Let ϕ ∈ Φ, ε > 0, x ∈ X \ P , v ∈ V , w ∈ W , and let g′+(x; v) exist. By the
above consequence of Proposition 2.22 used for x = x⊕ 0 ∈ X \ P , we find δ1 > 0
such that

(2.9) Dδh(x, v ⊕ w) ⊂ Dδh(x, v) +Bϕ(Dδh(x,w); ε/2)
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holds for every 0 < δ < δ1. Since x, v ∈ X, we have that g̃(x) = g(x) and
g̃′+(x; av + bw) = ag′+(x; v) + bw exists for any a, b ≥ 0. Hence Proposition 2.5
implies that there is 0 < δ0 < δ1 such that


(Dδh(x, av + bw),Dδf(g(x), ag
′
+(x; v) + bw))(2.10)

= 
(Dδh(x, av + bw),Dδf(g̃(x), g̃
′
+(x; av + bw))) < ε/6

for every 0 < δ < δ0 and a, b = 0, 1. Hence (2.9) and (2.10) give that for any
0 < δ < δ0,

Dδf(g(x), g
′
+(x; v) + w) ⊂ Dδf(g(x), g

′
+(x; v)) +Bϕ(Dδf(g(x), w); ε). �

2.24. Corollary. Suppose that f is a locally Lipschitz mapping of a separable Ba-
nach space Y to a finite dimensional space Z. Then there is a σ-directionally porous
set P ⊂ Y such that

Df(y, v + w) ⊂ Df(y, v) +Df(y, w)

for every y ∈ Y \ P , and v, w ∈ Y .
If, in addition, X is a separable Banach space and g : X �→ Y is locally Lipschitz,

then there is a σ-directionally porous set Q ⊂ X such that

Df(g(x), g′(x; e) + w) ⊂ Df(g(x), g′(x; e)) +Df(g(x), w)

whenever x ∈ X \Q, e ∈ X is such that g′(x; e) exists, and w ∈ Y .

Proof. We prove just the additional part, since the former follows from it by consid-
ering the identity mapping g. From Corollary 2.23 with Φ = Lip1(Z) we infer that
there is a σ-directionally porous set Q ⊂ X such that for every ε > 0, x ∈ X \ Q,
w ∈ Y , and for every direction of e ∈ X at which g is differentiable there is δ0 such
that

Dδf(g(x), g
′(x; e) + w) ⊂ Dδf(g(x), g

′(x; e)) +Bϕ(Dδf(g(x), w); ε)

whenever 0 < δ < δ0 and ϕ ∈ Lip1(Z). The statement follows by taking the limits
as δ ↘ 0 and with ε ↘ 0, and by using that Df(g(x), g′(x; e)) + Df(g(x), w) is
compact. �

The following example illustrates the need for the finite dimensionality assump-
tion on Z, even in the situation when X = R, Y = R

2, g(x) = (x, 0) and Z = �2.

2.25. Example. There is f : R2 �→ �2 such that f(x, 0) = 0 and

lim sup
δ↘0

diam(Dδf((x, 0), (1, 1))) ≥ 2 >
√
2 ≥ lim sup

δ↘0
diam(Dδf((x, 0), (0, 1)))

for every x ∈ R.

Proof. Let ej , j = 1, 2, . . . , be an orthonormal basis of �2. We define

f(x, y) = 0 if y ≤ 0 or y ≥ 1,

f(x, 2−2i) = 2−2i(e2i cos(2
−2iπx) + e2i+1 sin(2

−2iπx)),

f(x, 2−2i+1) = 2−2i+1(e2i cos(2
−2iπx) + e2i+1 sin(2

−2iπx)),

and extend f to a function which is affine on each segment [(x, 2−j−1), (x, 2−j)],
j = 0, 1, . . . .

The first inequality follows by observing that for every x ∈ R the unit vectors
(f(x+ 2−2i, 2−2i)− f(x, 0))/2−2i and (f(x+ 2−2i+1, 2−2i+1)− f(x, 0))/2−2i+1 are
opposite to each other, and hence diam(Dδf((x, 0), (1, 1))) ≥ 2 for each δ > 0.
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To prove the second inequality, let x ∈ R and 0 < t < 1/2 and observe
that for t ∈ [2−j , 2−j+1] the slope (f(x, t) − f(x, 0))/t is a convex combination
of the slopes (f(x, 2−j) − f(x, 0))/2−j and (f(x, 2−j+1) − f(x, 0))/2−j+1. Hence
Dδf((x, 0), (0, 1)) is contained in the convex hull of the mutually orthogonal unit

vectors e2i cos(2
−2iπx) + e2i+1 sin(2

−2iπx) which has diameter
√
2. �

3. Convexity of upper derivative and other results

for one dimensional target

In this section we intend to treat the special case of real-valued functions. The
results, including the main Proposition 3.6, are easy corollaries of those from the
previous section. However, the special nature of the problems, in particular the
possibility of considering various upper derivatives, deserves separate consideration.
We recall that to each of the δ-approximating derived sets of a real-valued locally
Lipschitz function f on a Banach space Y there corresponds an upper derivative
by

Df(y, v) = supDf(y, v), Bf(y, v) = supZf(y, v),

Zf(y, v) = supPf(y, v), Cf(y, v) = sup Cf(y, v).
We will use the names upper (Dini) derivative, Zahorski’s upper derivative, Michel–
Penot’s (or Michel-Penot) upper derivative, and strict (or Clarke) upper derivative,
respectively.

It is easy to see directly or via the fact that Dδf(y, v) converge to Df(y, v) in the
Hausdorff metric that Df(y, v) = limδ↘0 supDδf(y, v), which is clearly the same
as the more usual definition from the introduction. Similarly, the definitions of the
remaining upper derivatives may be transformed to their more familiar forms.

Taking the suprema in Corollary 2.15, we immediately get the result of [21] for
the strict upper derivative and its counterpart for other upper derivatives.

3.1. Proposition. Let f be a real-valued locally Lipschitz function on an open
subset H of a separable Banach space Y .

(i) There is a σ-directionally porous set QZ ⊂ Y such that Bf(y, v) = Df(y, v)
for every y ∈ H \QZ and every v ∈ Y .

(ii) There is a σ-porous set QP ⊂ Y such that Zf(y, v) = Df(y, v) for every
y ∈ H \QP and every v ∈ Y .

(iii) There is a meager set QC ⊂ Y such that Cf(y, v) = Df(y, v) for every y ∈
H \QC and every v ∈ Y .

Symmetry of Dini derivatives of real-valued functions on separable spaces follows
immediately from Corollary 2.16 or from (i) above.

3.2. Theorem. Let f be a real-valued locally Lipschitz function on an open subset
H of a separable Banach space Y . Then there is a σ-directionally porous set Q ⊂ Y
such that Df(y, v) = −Df(y,−v) for every y ∈ H \Q and every v ∈ Y .

Having recapitulated results following from the general investigations in Sec-
tion 2, we come to the main theme of this section. In addition to proving, on a sep-
arable Banach space Y , convexity of the upper derivative except for a σ-directionally
porous set, we also address a related question: Can one define a “new” upper de-
rivative which would be convex at every point and which would coincide with the
upper derivative except for a “very small” (e.g., σ-directionally porous) set? (This
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is just the first step; ultimately, we wish to have a notion that would allow natu-
ral formulations of the chain rule.) The strict upper derivative is clearly not the
answer, as is shown by many well-known examples (including the one in Theo-
rem 2.20(iii)). The Zahorski’s upper derivative coincides with the upper derivative
except for a σ-directionally porous set, but easy examples show that it need not
be convex at every point, and the Michel-Penot upper derivative may differ from
the upper derivative in a too large set, as shown by the example mentioned in
Theorem 2.20(ii). In the case of Michel-Penot’s derivative this example may not
seem to be convincing, since we still get an agreement except for a σ-porous set.
However, in connection with the chain rule formula, σ-porous sets may turn out to
be too large, and we will see in Example 6.6 that this upper derivative indeed does
not lead to a satisfactory chain rule formula. Since the problem seems to be that
these upper derivatives may attain values much larger than the Dini derivatives, a
natural candidate for the notion of upper derivative that would satisfy our require-
ments is the smallest convexification of upper derivatives. In a similar context this
is usually presented in dual form (and in the language of subdifferentials), and so
we first recall its construction.

3.3. Lemma. Let p be a Lipschitz positively homogeneous function on Y . Then the
function

p̃(u) = sup
v∈Y

(p(u+ v)− p(v))

is well-defined, Lipschitz, positively homogeneous, subadditive, and therefore convex.

Proof. Since p(u + v) − p(v) ≤ C‖u‖, where C is the Lipschitz constant of p,
p̃ is well-defined. If t > 0, we use the positive homogeneity of p to infer that
p̃(u) = supv∈Y (p(u + v) − p(v)) = t supv∈Y (p(u/t + v/t) − p(v/t)) = tp̃(u/t). If
u1, u2 ∈ Y and ε > 0, we find v ∈ Y such that p(u1+u2+v)−p(v) > p̃(u1+u2)−ε.
Then p̃(u1 + u2) − ε < p(u1 + u2 + v) − p(v) = (p(u1 + u2 + v) − p(u2 + v)) +
(p(u2 + v) − p(v)) ≤ p̃(u1) + p̃(u2). Finally, the subadditivity of p̃ implies that
p̃(u1)− p̃(u2) ≤ p̃(u1 − u2) ≤ C‖u1 − u2‖, so p̃ is Lipschitz. �

If f is a real-valued function on a Banach space Y which is Lipschitz on a
neighborhood of a point y ∈ Y , we define

D̃f(y, u) = sup
v∈Y

(
Df(y, u+ v)−Df(y, v)

)
.

3.4. Lemma. Let f be a locally Lipschitz real-valued function on an open subset H
of a Banach space Y . Then

(i) for every y ∈ H the function u �→ D̃f(y, u) is Lipschitz, convex, positively
homogeneous, and subadditive;

(ii) if f is Gâteaux differentiable at y ∈ H, then D̃f(y, u) = f ′(y; u) for every
u ∈ Y ;

(iii) f is Gâteaux differentiable at y ∈ H if and only if D̃f(y, u) = −D̃(−f)(y, u)
for every u ∈ Y ;

(iv) if Y is separable, then the mapping (y, u) �→ D̃f(y, u) is Borel measurable.

Proof. (i) Follows from Lemma 3.3.
(ii) If f is Gâteaux differentiable at y, then Df(y, w) = f ′(y; w) for all w ∈ Y .

Therefore,

D̃f(y, u) = sup
v∈Y

(Df(y, u+ v)−Df(y, v)) = sup
v∈Y

(f ′(y; u+ v)− f ′(y; v)) = f ′(y; u).
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(iii) If f is Gâteaux differentiable at y, this follows from (ii) used for functions±f .

For the opposite direction, observe that u → D̃(±f)(y, u) are both convex and
Lipschitz, so the assumed equality implies that they are linear and continuous.
Since the upper and lower derivatives of f at y are between these two values,

f ′(y; u) exists and is equal to D̃f(y, u).
(iv) Let V be a countable dense subset of Y . Consider any real number a. Then

{(y, u) : D̃f(y, u) ≤ a} = {(y, u) : Df(y, u+ v)−Df(y, v) ≤ a ∀v ∈ Y }

=
⋂
v∈V

{(y, u) : Df(y, u+ v)−Df(y, v) ≤ a}.

Hence it suffices to show that for each fixed v ∈ Y and λ = 0, 1, the function
hλ(y, u) = Df(y, λu + v) is Borel measurable. But this follows by observing that
for any fixed b ∈ R, the set {(y, u) : Df(y, λu+ v) > b} is

∞⋃
n=1

∞⋂
m=1

⋃
t∈(0,1/m)∩Q

{
(y, u) :

f(y + t(λu+ v))− f(y)

t
> b+

1

n

}
,

and the sets involved in this expression are open. �

3.5. Proposition. Let f be a real-valued locally Lipschitz function on an open
subset H of a separable Banach space Y . Then there is a σ-directionally porous set

Q ⊂ Y such that D̃f(y, v) = Df(y, v) for every y ∈ H \Q and every v ∈ Y .
More generally, if G is an open subset of a separable Banach space X and

g : G → H is locally Lipschitz, then there is a σ-directionally porous set P ⊂ X

such that D̃f(g(x), g′(x; e)) = Df(g(x), g′(x; e)) whenever x ∈ G \P and e ∈ X is
such that g′(x; e) exists.

Proof. To prove the second statement, we use Corollary 2.24 to find a σ-directionally
porous set P ⊂ X such that

Df(g(x), g′(x; e) + w) ⊂ Df(g(x), g′(x; e)) +Df(g(x), w)

whenever x ∈ G\P , e ∈ X is such that g′(x; e) exists, and w ∈ Y . Taking suprema,
we infer that for any such x, e and w,

Df(g(x), g′(x; e) + w) ≤ Df(g(x), g′(x; e)) +Df(g(x), w).

Hence D̃f(g(x), g′(x; e)) = Df(g(x), g′(x; e)), as claimed. The first statement
follows from the second with X = Y , G = H and g the identity. �

Convexity of upper derivatives follows immediately from Proposition 3.5 and
Lemma 3.4(i).

3.6. Proposition. Let f be a real-valued locally Lipschitz function on an open
subset H of a separable Banach space Y . Then there is a σ-directionally porous
subset Q of Y such that for every y ∈ H \ Q the function v �→ Df(y, v) is convex
on Y .

We also remark that Proposition 3.6 and Theorem 3.2 easily give that for a
real-valued locally Lipschitz function f on a separable Banach space Y , the set of
points y at which the directions of differentiability do not form a linear subspace
of Y is σ-directionally porous and that, consequently, with the exception of points
of a σ-directionally porous set, Gâteaux differentiability of f may be deduced from
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its directional differentiability in a spanning set of directions. Since we prove more
in Corollaries 8.1 and 8.2 we omit the (simple) details.

4. Chain rule formula

As explained in the introduction, the idea behind our notion of “generalized
derivatives” or, as we will call them, “derivative assignments”, is simple: given a
Lipschitz mapping f of a separable Banach space Y to a (separable) Banach space
Z, we choose for each y ∈ Y a closed linear subspace U(f, y) of Y such that f ′(y; u)
exists for each u ∈ U(f, y) and depends linearly on u. The generalized derivative
is then defined as the map u ∈ U(f, y) → f ′(y; u). Thus the simplest, though not
very useful, example of a derivative assignment is to assign to every y the trivial
subspace {0}. The assignment U(f, y) = Y if f is Gâteaux differentiable at y
and U(f, y) = {0} otherwise is also not useful for obtaining a chain rule: since
our problem is precisely that the image of g may lie in an L null set of points at
which f is not differentiable, we need to assign non-trivial spaces also to (some)
such points. Notice, however, that for a nowhere differentiable Lipschitz function
f : R → Z (which exists provided Z fails to have the Radon-Nikodym property)
these two assignments coincide and in fact such an f has only this trivial derivative
assignment.

We provide more substantial examples of derivative assignments in the next
section. Before that we give precise definitions of these assignments and of the
notion of their completeness. The notion of completeness is exactly what we need
in order to obtain a natural formulation of the chain rule formula, and we therefore
immediately state and prove chain rules involving complete derivative assignments,
although their existence will be established only in the next section.

4.1. Definition. Let Y , Z be separable Banach spaces and f : Y �→ Z.
If U is a linear subspace of Y and y ∈ Y , we say that f is Gâteaux differentiable

at y in the direction of U if there is a continuous linear mapping L(y) : U → Z,
which is termed the Gâteaux derivative of f at y in the direction of U such that
limt→0(f(y + tu)− f(y))/t = L(y)(u) for every u ∈ U .

A derivative assignment for f assigns to every y ∈ Y the Gâteaux derivative
f�(y) of f at y in the direction of some closed linear subspace U(f, y) of Y . It is
often more convenient to speak about the assignment U(f, y); this is justified by
observing that f�(y) is uniquely determined by U(f, y).

The derivative assignment y ∈ Y �→ f�(y) is said to be complete if for every
separable Banach space X and every Lipschitz mapping g : X �→ Y there is an
L null set N ⊂ X such that g′(x; e) belongs to the domain of f�(g(x)) whenever
x ∈ X \N , e ∈ X, and g′(x; e) exists.

A complete derivative of f assigns to every y ∈ Y a continuous linear map-
ping f§(y) : Y → Z in such a way that for every separable Banach space X and
every Lipschitz mapping g : X �→ Y there is an L null set N ⊂ X such that
f ′(g(x); g′(x; e)) exists and is equal to f§(g(x))(g′(x; e)) whenever x ∈ X \ N ,
e ∈ X, and g′(x; e) exists. In particular, a complete derivative may be obtained
from a complete derivative assignment f� by extending, for each y ∈ Y , f�(y) to
a linear operator f§(y) defined on the whole Y , provided all these extensions ex-
ist. Conversely, every complete derivative f§ is obtained in this way provided that
f has a complete derivative assignment, since if U(f, y) is a complete derivative
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assignment, then {u ∈ U(f, y) : f ′(y;u) = f§(y)(u)} is also a complete derivative
assignment.

The importance of complete derivative assignments stems from the validity of
natural statements of the chain rule formula. We first state and prove it as a rule
for finding a complete derivative assignment for a composition of functions with
given complete derivative assignments.

4.2. Theorem. Suppose that X,Y, Z are separable Banach spaces and that g : X →
Y and f : Y → Z are locally Lipschitz functions having complete derivative assign-
ments x ∈ X → g�(x) and y ∈ Y → f�(y). Then

(4.1) x ∈ X → f�(g(x)) ◦ g�(x)
is a complete derivative assignment for f ◦ g : X → Z.

Proof. We first notice that the composition of derivative assignments is a derivative
assignment (without assuming completeness): the domain of f�(g(x))◦g�(x) is the
closed linear subspace Ux := {e ∈ U(g, x) : g�(x)(e) ∈ U(f, g(x))}, the composition
f�(g(x)) ◦ g�(x) is continuous and linear on its domain and by the chain rule for
Gâteaux derivatives it is the Gâteaux derivative of f ◦ g in the direction of Ux.

Let W be a separable Banach space and h : W → X a Lipschitz map. To prove
completeness of our assignment, we have to find an L null set N ⊂ W such that
h′(w; e) belongs to Uh(w) whenever w ∈ W \N , e ∈ W , and h′(w; e) exists.

By completeness of the derivative assignment g� there is an L null set N1 ⊂ W
such that h′(w; e) belongs to the domain of g�(h(w)) whenever w ∈ W \ N1,
e ∈ W , and h′(w; e) exists. Similarly, by completeness of the derivative assignment
f� there is an L null set N2 ⊂ W such that (g ◦ h)′(w; e) belongs to the domain of
f�((g ◦ h)(w)) whenever w ∈ W \N2, e ∈ W , and (g ◦ h)′(w; e) exists.

Let N = N1∪N2 and suppose that w ∈ W \N and e ∈ W are such that h′(w; e)
exists. Since w /∈ N1, h

′(w; e) belongs to the domain of g�(h(w)) and the chain
rule for the composition g ◦ h in the direction of e implies that (g ◦ h)′(w; e) exists
and (g ◦ h)′(w; e) = g′(h(w); h′(w; e)) = g�(h(w))(h′(w; e)). Since w ∈ X \ N2,
it follows that (g ◦ h)′(w; e) and so g�(h(w))(h′(w; e)) belongs to the domain of
f�(g(h(w))). Hence h′(w; e) ∈ Uh(w), as required. �

The notion of derivative assignments has been chosen so that this rule immedi-
ately extends to a composition of any number of functions and to complete deriva-
tives.

4.3. Theorem. Suppose that Xi, i = 1, . . . , n+1, are separable Banach spaces and
gi : Xi → Xi+1, i = 1, . . . , n, are Lipschitz functions.

(i) If x ∈ Xi �→ g�i (x), i = 1, . . . , n, are complete derivative assignments, then

x1 ∈ X1 �→ g�n (xn) ◦ · · · ◦ g�1 (x1),

where xi = gi−1(xi−1), is a complete derivative assignment for gn ◦ · · · ◦ g1.
(ii) If x ∈ Xi �→ g§i (x), i = 1, . . . , n, are complete derivatives, then

x1 ∈ X1 �→ g§n(xn) ◦ · · · ◦ g§1(x1)

is a complete derivative of gn ◦ · · · ◦ g1.

These chain rules easily imply the chain rules for finding the Gâteaux derivative
of a composition.
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4.4. Theorem. Suppose Xi, i = 0, . . . , n + 1, are separable Banach spaces and
gi : Xi → Xi+1, i = 0, . . . , n, are Lipschitz functions such that gi, i = 1, . . . , n,
have complete derivative assignments x ∈ Xi �→ g�i (x). Then for L almost every
x0 ∈ X0 at which g0 is Gâteaux differentiable, the composition gn ◦ · · · ◦ g1 ◦ g0 is
Gâteaux differentiable at x0 and

(4.2) (gn ◦ · · · ◦ g1 ◦ g0)′(x0) = g�n (xn) ◦ · · · ◦ g�1 (x1) ◦ g′0(x0),

where xi = gi−1(xi−1). This, in particular, means that for each u0 ∈ X0 the
direction of u1 = g′0(x0)(u0) belongs to the domain of g�1 (x1), the direction of
u2 = g�1 (x1)(u1) belongs to the domain of g�2 (x2), etc.

Similarly, if x ∈ Xi �→ g§i (x), i = 1, . . . , n, are complete derivatives, then

(4.3) (gn ◦ · · · ◦ g0)′(x0) = g§n(xn) ◦ · · · ◦ g§1(x1) ◦ g′0(x0)

for L almost every x0 ∈ X0 at which g0 is Gâteaux differentiable.

Proof. Since by Theorem 4.3, g�n (xn) ◦ · · · ◦ g�1 (x1) is a complete derivative assign-
ment for gn◦· · ·◦g1, for L almost every x0 ∈ X0 at which g0 is Gâteaux differentiable
the image of g′0(x) lies in the domain of g�n (xn) ◦ · · · ◦ g�1 (x1) in the direction of
which gn ◦ · · · ◦ g1 is Gâteaux differentiable with derivative g�n (xn) ◦ · · · ◦ g�1 (x1).
Hence the first statement follows from the chain rule for Gâteaux derivatives, and
the second statement is an immediate consequence of the first. �

4.5. Remark. If X1 has the Radon-Nikodym property, then g0 is Gâteaux differen-
tiable L almost everywhere, and hence the chain rule formulas (4.2) and (4.3) hold
for L almost every x0.

5. Existence and measurability of complete derivative assignments

To show that the results of the previous section give non-trivial information, we
construct a number of complete derivative assignments and establish their measur-
ability properties. We will see in Proposition 5.2 that all assignments defined in the
following proposition are complete provided Z has the Radon-Nikodym property.
The assumption that Z has the Radon-Nikodym property is natural, since testing
completeness of a derivative assignment with X = Y and g the identity, we see
that for a complete assignment to exist f has to be Gâteaux differentiable L almost
everywhere. However, it does not seem reasonable to require the Radon-Nikodym
property already in the definition of derivative assignments; the assignment depends
on f , and there are maps between spaces without the Radon-Nikodym property for
which a complete derivative assignment exists. (In this connection, see Remark 5.3.)

5.1. Proposition. For any Lipschitz mapping f of a separable Banach space Y to
a separable Banach space Z each of the following defines a derivative assignment.

(i) To each y ∈ Y we may assign a maximal subspace U(f, y) in the direction of
which f is Gâteaux differentiable at y.

(ii) For each y ∈ Y we define Ua(f, y) as the set of those directions u ∈ Y such
that f ′(y; u) exists and such that whenever f ′(y; v) exists, then f ′(y; u + v)
does and f ′(y; u+ v) = f ′(y; u) + f ′(y; v).

(iii) If Z = R, we define Ut(f, y) as the set of all directions u ∈ Y such that

D̃f(y, u) = −D̃(f)(y,−u) = −D̃(−f)(y, u) = D̃(−f)(y,−u).
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(iv) If Z is finite dimensional, we define Uc(f, y) as the set of all directions u ∈ Y
such that f ′(y; u) exists and Df(y,±u+ v) ⊂ f ′(y; ±u) +Df(y, v) for every
v ∈ Y .

(v) With the radius rz(S) of a set S ∈ H(Z) about a point z ∈ Z defined as the
infimum of those r > 0 for which S ⊂ B(z, r), we let Ur(f, y) be the set of
those directions u ∈ Y for which f ′(y; u) exists and which have the property
that for every ε > 0, v ∈ Y , and z ∈ Z there is δ0 > 0 such that for every
0 < δ < δ0,

Dδf(y,±u+ v) ⊂ f ′(y; ±u) +B
(
z, rz(Dδf(y, v)) + ε

)
.

(vi) The previous example may be generalized in the following way. Suppose that
Φ ⊂ Lip1(Z) is separable in the topology of uniform convergence on bounded
sets and satisfies the condition that for every z ∈ Z and τ > 0 there are ϕ ∈ Φ
and ε > 0 such that Bϕ(z; ε) ⊂ B(z, τ ). We define UΦ(f, y) as the set of
those directions u ∈ Y for which f ′(y; u) exists and which have the property
that for every ε > 0, v ∈ Y , and ϕ ∈ Φ, there is δ0 > 0 such that for every
0 < δ < δ0,

Dδf(y,±u+ v) ⊂ f ′(y; ±u) +Bϕ(Dδf(y, v); ε).

Moreover,

(a) Ua(f, y) is the intersection of all maximal subspaces U of Y in the direction
of which f is Gâteaux differentiable at y; in particular U(f, y) ⊃ Ua(f, y) for
any choice of U(f, y) in (i);

(b) Ua(f, y) ⊃ Ur(f, y);
(c) Ur(f, y) coincides with UΦr

(f, y) where Φr := {‖ · − z‖ : z ∈ Y };
(d) if Z is finite dimensional, Uc(f, y) coincides with UΦ(f, y) for Φ = Lip1(Z);
(e) if Z = R, Ut(f, y), Ur(f, y), Uc(f, y) all coincide.

Proof. (i) Since f is Lipschitz, Lemma 2.3 implies that every subspace in the di-
rection of which f is Gâteaux differentiable at a point y is contained in a maximal
subspace having the same property and that such maximal subspaces are closed.
Hence U(f, y) is a closed linear subspace of Y in the direction of which f is Gâteaux
differentiable.

(a) If f is Gâteaux differentiable at y in the direction of a subspace U and
u ∈ Ua(f, y), it is Gâteaux differentiable at y in the direction of the linear span of
U ∪ {u}. If U is maximal, it follow that it contains u. Conversely, if u /∈ Ua(f, y),
then either f ′(y;u) does not exist and u does not belong to any U(f, y) or f ′(y;u)
exists and there is v such that f ′(y; v) exists and f is not Gâteaux differentiable in
the direction of the linear span of {u, v}. Taking for U(f, a) a maximal subspace
of Y containing v in the direction of which f is Gâteaux differentiable, we have
u /∈ U(f, y).

(ii) By (i) and (a), Ua(f, y) is a closed subspace of Y in the direction of which f
is Gâteaux differentiable.

(b) It suffices to use the definition of Ur(f, y) with z = f ′(y, v) and observe that
if f ′(y, v) exists, then rz(Dδf(y, v)) → 0 as δ → 0.

(c) The definition of Ur(f, y) is a slightly more geometric description of the
special case of (vi) in which Φ is the collection of functions ϕz(w) = ‖w − z‖.

(d) If u ∈ Uc(f, y), v ∈ Y and ε > 0, we use the finite dimensionality of Z
to infer that there is δ0 > 0 such that Dδf(y, u + v) ⊂ B(Df(y, u + v), ε) and
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Df(y, v) ⊂ B(Dδf(y, v), ε) for every 0 < δ < δ0. Hence

Dδf(y, u+ v) ⊂ f ′(y; u) +B(Dδf(y, v), 2ε),

and the requirement of (vi) holds for every ϕ ∈ Lip1(Z).
If u ∈ ULip1(Z)(f, y) and v ∈ Y , we get that for ϕ(z) := dist(z,Df(y, v)) and

any ε > 0 there is δ0 > 0 so that Dδf(y, u + v) ⊂ f ′(y; u) + Bϕ(Dδf(y, v); ε) for
0 < δ < δ0. Taking the limit as δ ↘ 0, we get by Example 2.8(i)

Df(y, u+ v) ⊂ f ′(y; u) +B(Df(y, v); 2ε),

which, since ε > 0 is arbitrary, gives Df(y, u+ v) ⊂ f ′(y; u) +Df(y, v).
The above arguments apply also to −u instead of u, and so Uc(f, y) = UΦ(f, y).
(e) We show Ut(f, y) ⊂ Ur(f, y) ⊂ Uc(f, y) ⊂ Ut(f, y).

Suppose u ∈ Ut(f, y). Using the inequality D̃g(y, u) ≥ Dg(y, u) with g = f and

g = −f , we infer that f ′
+(y; u) exists and is equal to D̃f(y, u) = −D̃(−f)(y, u).

Together with the same argument used in the direction of −u we get that f ′(y; u)
exists. Let ε > 0, v ∈ Y , and z ∈ Z. Since

Df(y, u+ v) ≤ D̃f(y, u) +Df(y, v) = f ′(y; u) +Df(y, v)

and

Df(y, u+ v) ≥ −D̃(−f)(y, u)−Df(y, v) = f ′(y; u)−Df(y, v),

we infer that for sufficiently small δ > 0,

Dδf(y, u+ v) ⊂ [f ′(y; u) +Df(y, v)− ε, f ′(y; u)−Df(y, v) + ε]

⊂ f ′(y; u) +B
(
z, rz(Dδf(y, v)) + ε

)
,

where Df(y, w) = inf Df(y, w) for y, w ∈ Y . This and a similar argument for −u
show that the requirements of the definition of u ∈ Ur(f, y) hold.

Suppose u ∈ Ur(f, y), ε > 0, v ∈ Y and ϕ ∈ Lip1(Z). By definition of Ur(f, y)
with z = 1

2 (Df(y, v) +Df(y, v)) there is δ0 > 0 such that for every 0 < δ < δ0,

Dδf(y, u+ v) ⊂ [f ′(y; u) +Df(y, v)− ε, f ′(y; u) +Df(y, v) + ε].

Since Df(y, v) ⊃ [Df(y, v), Df(y, v)], Dδf(y, u+ v) ⊂ f ′(y; u) +B(Df(y, v), ε) for
0 < δ < δ0. Consequently, Df(y, u+v) ⊂ f ′(y; u)+B(Df(y, v), ε), which, together
with a similar inclusion for −u, shows that u ∈ Uc(f, y).

Finally, suppose u ∈ Uc(f, y). Given ε > 0 find v ∈ Y so that

D̃f(y, u) < Df(y, u+ v)−Df(y, v) + ε.

By the definition of Uc(f, y), the right side is at most f ′(y; u)+ε, and we infer that

f ′(y; u) ≤ D̃f(y, u) < f ′(y; u) + ε. Hence D̃f(y, u) = f ′(y; u). Similarly we show

that −D̃(f)(y,−u), −D̃(−f)(y, u) and D̃(−f)(y,−u) are all equal to f ′(y; u).
(iii)–(vi) It remains to show that UΦ(f, y) is a closed linear space in the direction

of which f is Gâteaux differentiable. Suppose u, v ∈ UΦ(f, y). We first show that

(5.1) f ′(y; u+ v) exists and is equal to f ′(y; u) + f ′(y; v).

Given τ > 0, choose ϕ ∈ Φ and ε > 0 such that Bϕ(f
′(y; v); 2ε) ⊂ B(f ′(y; v), τ ).

By assumption, there is δ0 > 0 such that for every 0 < δ < δ0,

Dδf(y, u+ v) ⊂ f ′(y; u) +Bϕ(Dδf(y, v); ε).
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Since f ′(y; v) exists, Dδ0f(y, v) ⊂ B(f ′(y; v); ε) provided δ0 is small enough, and
then for any 0 < δ < δ0,

Dδf(y, u+ v) ⊂ f ′(y; u) +Bϕ(B(f ′(y; v); ε); ε) ⊂ B(f ′(y; u) + f ′(y; v); τ ).

Hence f ′
+(y; u+v) exists and is equal to f ′(y; u)+f ′(y; v), and the same argument

in the direction of −u shows (5.1).
Next we show that u + v ∈ UΦ(f, y). Given ε > 0 and w ∈ Y , find δ0 > 0 such

that for every 0 < δ < δ0,

Dδf(y, u+ (v + w)) ⊂ f ′(y; u) +Bϕ(Dδf(y, v + w); ε/2)

and

Dδf(y, v + w) ⊂ f ′(y; v) +Bϕ(Dδf(y, w); ε/2).

Hence

Dδf(y, u+ v + w) ⊂ f ′(y; u) +Bϕ(Dδf(y, v + w); ε/2)

⊂ f ′(y; u) + f ′(y; v) +Bϕ(Dδf(y, w); ε)

= f ′(y; u+ v) +Bϕ(Dδf(y, w); ε).

This and a similar argument for −u show that, indeed, u+ v ∈ UΦ(f, y).

Finally, suppose ũ ∈ UΦ(f, y) and v ∈ Y . Given ε > 0, find u ∈ UΦ(f, y) such
that ‖u− ũ‖ < ε, and for this u we find δ0 > 0 such that for every 0 < δ < δ0,

Dδf(y, u+ v) ⊂ f ′(y; u) +Bϕ(Dδf(y, v); ε).

Then by Lemma 2.3,

Dδf(y, ũ+ v) ⊂ B(Dδf(y, u+ v),Lip(f)ε)

⊂ B(f ′(y; u) +Bϕ(Dδf(y, v); ε),Lip(f)ε)

⊂ B(f ′(y; ũ), 2Lip(f)ε) +B(Bϕ(Dδf(y, v); ε),Lip(f)ε)

⊂ f ′(y; ũ) +Bϕ(Dδf(y, v); (3Lip(f) + 1)ε).

This and a similar argument for −u show ũ ∈ UΦ(f, y), and so finish the proof. �

5.2. Proposition. If in Proposition 5.1 the space Z has the Radon-Nikodym prop-
erty, each of the derivative assignments constructed there is complete.

Proof. By the additional statement in Proposition 5.1 we just need to consider the
assignment UΦ(f, y) defined in Proposition 5.1(vi). To prove its completeness, let
X be a separable Banach space and g : X → Y a Lipschitz map.

We first check that there is an L null set Q ⊂ X such that f ′(g(x); g′(x; e))
exists and is equal to (f ◦ g)′(x; e) whenever x ∈ X \Q, e ∈ X, and g′(x; e) exists.
Indeed, since Z has the Radon-Nikodym property and the mapping f ◦ g : X �→ Z
is Lipschitz, the set N of points where f ◦ g is not Gâteaux differentiable is L null.
For all x ∈ X \N and all e ∈ X, Proposition 2.5 shows that

lim
δ↘0


(Dδ(f ◦ g)(x, e),Dδf(g(x), g
′
+(x; e))) = 0.

SinceDδ(f◦g)(x, e) converges to (f◦g)′+(x; e) in the Hausdorff metric, and since this
argument can be used also in the direction of −e, this shows that f ′(g(x); g′(x; e))
exists and is equal to (f ◦ g)′(x; e), as required.

We are now ready to finish the proof of completeness of UΦ. Let v ∈ Y and
ε > 0. By Corollary 2.23 there exists a σ-directionally porous set P ⊂ X such that
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for every ε > 0, x ∈ X \ P , v ∈ Y and for every direction e ∈ X at which g is
differentiable one can find δ0 > 0 such that for every 0 < δ < δ0,

(5.2) Dδf(g(x), g
′
+(x; e) + v) ⊂ Dδf(g(x), g

′
+(x; e)) +Bϕ(Dδf(g(x), v); ε).

If x ∈ X\(N∪P ) and e ∈ X are such that g′(x; e) exists, we may assume δ0 has been
chosen small enough to guarantee Dδf(g(x), g

′
+(x; e)) ⊂ B(f ′(g(x); g′(x; e)), ε).

Hence (5.2) implies that

Dδf(g(x), g
′(x; e) + v) ⊂ f ′(g(x); g′(x; e)) +Bϕ(Dδf(g(x), v); 2ε).

The same argument may be used in the direction of −e, and we conclude that
indeed g′(x; e) ∈ UΦ(f, g(x)). �

5.3. Remark. This proof shows that the assumption that the Banach space Z has
the Radon-Nikodym property may be replaced by a weaker one, which depends not
on the quality of the space Z but of the function f : we only need that for every
separable Banach space X and every Lipschitz mapping g : X �→ Y there is an
L null set N ⊂ X such that (f ◦ g)′(x; e) exists whenever x ∈ X \N , e ∈ X.

We now turn our attention to measurability of derivative assignments. The
reason why we care so much about their (Borel) measurability is apparent from
the following example, which points out that “generalized derivatives” for which a
chain rule formula holds may be defined in a highly non-constructive way.

5.4. Example. Assuming the Continuum Hypothesis, we order all Lipschitz map-
pings of R to R

2 into a transfinite sequence gα indexed by countable ordinals. For
each x ∈ R

2 we find the first ordinal α = αx for which there is t ∈ R such that
gα(t) = x, gα is differentiable at t and g′α(t) �= 0, and we denote vx = g′α(t).
Whenever f : R2 �→ R we choose for each x ∈ R

2 any linear map f§(x) : R2 → R

such that f§(x)(vx) = f ′(x; vx) if f ′(x; vx) exists and such that f§(x) �= f ′(x) if
f is differentiable at x. We show that for any Lipschitz mapping g : R �→ R

2,
(f ◦ g)′(t) = f§(g(t))(g′(t)) holds for almost all t. Since this formula clearly holds
for almost all t for which g′(t) is a multiple of vg(t), we just have to show that the
set T of those t for which g′(t) exists and is not a multiple of vg(t) has measure

zero. Find α so that g = gα and denote by Tβ the set of those (s, t) ∈ R
2 for which

gα(t) = gβ(s), g
′
α(t) �= 0, g′β(t) �= 0 and g′α(t) is not a multiple of g′β(s). Since

Tβ consists only of isolated points, it is countable. If t ∈ T , the minimality of the
choice of αg(t) guarantees that αg(t) ≤ α. Also, we cannot have αg(t) = α, since
then g′(t) = vg(t). Hence T ⊂

⋃
β<α{t : (∃s)(t, s) ∈ Tβ} is countable, and it follows

that the chain rule formula holds, even though it never happens that f§(x) is the
derivative of f at x!

We say that the derivative assignment y �→ f�(y) is Borel measurable if the
set of triples (y, u, f�(y)(u)) such that u belongs to the domain of f�(y) is Borel
measurable in Y × Y × Z.

5.5. Remark. By standard descriptive set theoretic arguments (see, for example,
[25, Theorem 14.12]) the requirement of this definition is equivalent to saying that
the set U of the pairs (y, u) such that u belongs to the domain of f�(y) is Borel
measurable in Y × Y and that the mapping (y, u) �→ f ′(y; u) is Borel measurable
on U . Because of Lemma 1.5, the latter requirement is automatically satisfied if f
is Lipschitz.
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We intend to show next that the assignment UΦ from Proposition 5.1(vi), and
so also those from (iii), (iv), (v), are Borel measurable. For this, we first establish
Borel measurability of sets from which UΦ is built.

5.6. Lemma. Whenever f : Y → Z is Lipschitz, u, v, w ∈ Y , ϕ ∈ Lip1(Z) and
α, β, γ, ε, τ > 0, there is a Borel set E ⊂ Y such that

{y ∈ Y : Dαf(y, u) ⊂ Dβf(y, v) +Bϕ(Dγf(y, w); ε)}
⊂ E ⊂ {y ∈ Y : Dαf(y, u) ⊂ Dβf(y, v) +Bϕ(Dγf(y, w); ε+ τ )}.

Proof. Given any m ∈ N, we denote by Fn the set of those y ∈ Y for which one
can find 1/n ≤ r ≤ α− 1/n such that

(5.3) dist
(f(y + ru)− f(y)

r
,Dβf(y, v) +Bϕ(Dγf(y, w); ε)

)
≥ τ,

and we show that each Fn is closed. Let yk ∈ Fn, yk → y, and let 1/n ≤ rk ≤ α−1/n
be such that (5.3) holds with y replaced by yk and r by rk. It suffices to assume
that rk → r and show (5.3) for this r. Suppose, for a contradiction, that (5.3) fails:

dist
(f(y + ru)− f(y)

r
,Dβf(y, v) +Bϕ(Dγf(y, w); ε)

)
< τ.

This means that there are 0 < s < β, 0 < t < γ and z ∈ Z such that

ϕ(z) < ϕ
(f(y + tw)− f(y)

t

)
+ ε

and ∥∥∥f(y + ru)− f(y)

r
− f(y + sv)− f(y)

s
− z

∥∥∥ < τ.

By continuity, both these inequalities remain valid when we replace y by yk and r
by rk for k large enough, providing a contradiction to (5.3).

Let E = Y \
⋃∞

n=1 Fn. If Dαf(y, u) ⊂ Dβf(y, v)+Bϕ(Dγf(y, w); ε), then clearly
y ∈ E. Conversely, if y ∈ E, we choose for every 0 < r < α an n ∈ N such that
1/n ≤ r ≤ α− 1/n and use that y /∈ Fn to infer

f(y + ru)− f(y)

r
∈ B(Dβf(y, v) +Bϕ(Dγf(y, w), ε); τ )

⊂ Dβf(y, v) +Bϕ(Dγf(y, w); ε+ τ ). �

5.7. Theorem. Each of the assignments from Proposition 5.1 (iii)–(vi) is Borel
measurable.

Proof. By the additional statement in Proposition 5.1 we just need to consider the
assignment UΦ(f, y) defined in Proposition 5.1(vi), and by Remark 5.5 it is enough
to show that the set A of pairs (y, u) ∈ Y × Y , such that u ∈ UΦ(f, y), is Borel.
Let W and Ψ be countable dense subsets of Y and Φ, respectively. For σ = ±1,
u, v ∈ W , ψ ∈ Ψ and p, q ∈ N use Lemma 5.6 to find a Borel set Eσ,u,v,ψ,p,q such
that

{y ∈ Y : Dδf(y, σu+ v) ⊂ Dδf(y, σu) +Bϕ(Dδf(y, v); ε)}
⊂ Eσ,u,v,ψ,p,q ⊂ {y ∈ Y : Dδf(y, σu+ v) ⊂ Dδf(y, σu) +Bϕ(Dδf(y, v); 2ε)}

where ε = 1/p and δ = 1/q.
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We show that

(5.4) A =
{
(y, u) : f ′(y; u) exists and y ∈

⋂
σ=±1

⋂
v∈W

⋂
ψ∈Ψ

∞⋂
p=1

∞⋃
r=1

∞⋂
q=r

Eσ,u,v,ψ,p,q

}
.

If (y, u) ∈ A, f ′(y; u) exists, and for every σ = ±1, v ∈ W , ψ ∈ Ψ and p ∈ N we
may find δ0 > 0 such that for every 0 < δ < δ0,

Dδf(y, σu+ w) ⊂ f ′(y; σu) +Bψ(Dδf(y, w); 1/2p).

Choosing r ∈ N such that r > 1/δ0, we infer from f ′(y; σu) ∈ Dδf(y, σu) that
y ∈ Eσ,u,v,ψ,p,q for every q ≥ r. Hence (y, u) belongs to the right side of (5.4).

Assume now that (y, u) belongs to the right side of (5.4), σ = ±1, ε > 0, v ∈ Y ,
and ϕ ∈ Φ. Find p ∈ N, ṽ ∈ W and ψ ∈ Ψ such that p > (3 + 4Lip(f))/ε,
‖ṽ − v‖ < 1/p, and sup‖z‖≤Lip(f) |ψ(z)− ϕ(z)| < 1/p. By our assumption, there is

r ∈ N such that y ∈ Eσ,ũ,ṽ,ψ,p,q for every q ≥ r. Let δ0 = 1/r0, where r0 ≥ r is
such that (‖u‖ + ‖v‖)/r0 < 1/p. For every 0 < δ < δ0 we find q ≥ r0 such that
δq := 1/(q + 1) ≤ δ < 1/q and using Lemma 2.4 conclude that

Dδf(y, σu+ v) ⊂ B(Dδqf(y, σu+ v), 2Lip(f)(‖u‖+ ‖v‖)/q)
⊂ B(Dδqf(y, σu+ ṽ), 3Lip(f)/p)

⊂ B(Dδqf(y, σu) +Bψ(Dδqf(y, ṽ); 2/p), 3Lip(f)/p)

⊂ B(Dδqf(y, σu) +Bϕ(Dδqf(y, v), 3/p); 4Lip(f)/p)

⊂ Dδqf(y, σu) +Bϕ(Dδqf(y, v); (3 + 4Lip(f))/p)

⊂ Dδf(y, σu) +Bϕ(Dδf(y, v); ε).

Having established (5.4), we recall that the set {(y, u) : f ′(y; u) exists} is Borel
by Lemma 1.5 (i), and conclude that (5.4) shows that A is Borel. �

5.8. Remark. While the assignment from Proposition 5.1 (i) has non-constructive
features reminiscent of Remark 5.3, the assignment Ua(f, x) from Proposition 5.1
(ii) is defined in a way suggesting that is may be measurable. In fact, it is measur-
able with respect to the σ-algebra generated by Suslin sets (and hence universally
measurable). To see this, let E denote the set of (y, u) ∈ Y × Y such that f ′(y; u)
exists, and let F be the set of (y, u, v, w) ∈ Y 4 that satisfies the following three
conditions.

• (y, u), (y, v) ∈ E;
• w = u+ v;
• either (y, w) /∈ E or (y, w) ∈ E and f ′(y; w) �= f ′(y; u) + f ′(y; v).

Then Lemma 1.5 implies that F is Borel, and so

{(u, y) : u ∈ Ua(f, y)} = E \ {(y, u) : (∃v, w)(y, u, v, w) ∈ F}
is a complement of a Suslin set.

6. Existence and measurability of complete derivatives

Finally, we want to address briefly the problem of defining complete deriva-
tives. As already pointed out, this is an extension problem, since we construct
complete derivatives by considering a complete derivative assignment y �→ f�(y)
and attempting to extend, for each y, the mapping f�(y) from its domain to the
whole space; of course, we would also prefer to do this in a measurable way. There
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are three cases we consider, since firstly, such an extension is easy to establish in
Hilbert spaces; secondly, we have the Hahn-Banach Theorem if the target space is
one dimensional; and thirdly, an abstract selection may be used if there is enough
(weak) compactness in the target space. We recall that the Borel measurability
of y �→ f§(y) means that the mapping (y, v) �→ f§(y)(v) of Y × Y to Z is Borel
measurable. Since we are in complete separable metric spaces, this is equivalent
to requiring that the set of triples (y, v, f§(y)(v)) is a Borel measurable subset of
Y × Y × Z.

6.1. Lemma. Suppose that Y , Z are separable Banach spaces and subspaces U(f, y)
of Y define a measurable derivative assignment for a Lipschitz map f : Y → Z.
If Y is reflexive, then for every bounded closed convex subset G of Y the sets
{y : G ∩ U(f, y) �= ∅} and {y : G ∩U(f, y) = ∅} are Borel measurable subsets of Y .

Proof. Let U = {(y, u) : u ∈ U(f, y)}. The set V = U ∩ (Y ×G) is a Borel subset
of Y × G with closed convex sections Vy = {u ∈ G : (y, u) ∈ V }. Endowing G
with the (compact metrizable) weak topology, we see that V is a Borel subset of
Y ×G with compact sections. Hence, according to [25, Theorem 28.8], its projection
{y ∈ Y : Vy �= ∅} = {y : G ∩ U(f, y) �= ∅} is a Borel subset of Y . The second set is
complementary to the first. �

The special case of Hilbert spaces, including finite dimensional spaces.
We emphasize that finite dimensional spaces are included in this simple approach;
this is, of course, achieved by choosing an arbitrary scalar product.

6.2. Proposition. Let Y be a separable Hilbert space and let Z be a separable
Banach space. Whenever y ∈ Y �→ f�(y) is a measurable complete derivative
assignment for a Lipschitz map f : Y → Z, then f§(y) = f� ◦ Py, where Py is
the orthogonal projection onto the domain of f�(y), is a Borel measurable complete
derivative of f .

Proof. Since the mapping (y, v) �→ f ′(y; v) is measurable on its domain which is
a Borel subset of Y × Y (see Lemma 1.5), it suffices to show that the mapping
(y, v) �→ (y, Py(v)) is Borel measurable, which is the same as saying that the map-
ping (y, v) �→ Py(v) is Borel measurable.

Let U(y) denote the domain of f�(y), U := {(y, u) : u ∈ U(y)}, and let (vi, ri)
be a sequence dense in Y × (0,∞). We fix a closed ball B in Y and put

Vi,n = {(y, v) : ‖v − vi‖ < 1/n,B(vi, ri)∩U(y) = ∅, B(vi, ri + 1/n)∩B∩U(y) �= ∅}.
Observing that Lemma 6.1 implies that the sets Vi,n are Borel measurable, we see
that

{(y, v) : Py(v) ∈ B} =

∞⋂
n=1

∞⋃
i=1

Vi,n

is a Borel subset of Y × Y , which implies the statement, since every open subset of
Y is a countable union of closed balls. �

Note. By using Proposition 6.2 with the derivative assignments from Proposi-
tion 5.1 (v) or (vi), or with Proposition 5.1(iv) if Z is finite dimensional or Propo-
sition 5.1(iii) if Y is one dimensional, we obtain a measurable complete derivative
which extends the Gâteaux derivative in the sense that if f is Gâteaux differentiable
at y, then f§(y) = f ′(y).
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The special case of one dimensional target spaces. We show that the com-
pleteness of the assignment from Proposition 5.1(iii) enables relatively simple con-
structions of complete derivatives for real-valued mappings. Obviously, applied to
each coordinate separately this also gives a proof of existence of complete derivatives
for mappings into finite dimensional spaces.

6.3. Proposition. Let Y be a separable Banach space and let f : Y → R be
locally Lipschitz. Suppose that, for each y ∈ Y , f§(y) ∈ Y ∗ is chosen such that

f§(y)(u) ≤ D̃f(y, u) for every u ∈ Y . Then y �→ f§(y) is a complete derivative.

Proof. Because the derivative assignment from Proposition 5.1(iii) is complete, in
order to verify that y �→ f§(y) is a complete derivative it suffices to show that

f§(y)(u) = D̃f(y, u) for every u ∈ Y such that D̃f(y, u) = −D̃(f)(y,−u). But

this is obvious, since f§(y)(±u) ≤ D̃f(y,±u) implies that f§(y)(u) ≤ D̃f(y, u) and

f§(y)(u) = −f§(y)(−u) ≥ −D̃f(y,−u) = D̃f(y, u). �

Since D̃f(v) is convex and subadditive, the Hahn-Banach Theorem implies that
Proposition 6.3 may be used to find complete derivatives of all Lipschitz functions.
However, we are again left with a measurability problem, which is answered in the
following statement.

6.4. Proposition. Let Y be a separable Banach space and let f : Y �→ R be locally
Lipschitz. Then there is a norm to w∗ Borel measurable mapping f§ : Y → Y ∗

such that f§(y)(u) ≤ D̃f(y, u) for every u ∈ Y for all y, u ∈ Y .
If Y ∗ is separable, any such f§ is norm to norm Borel measurable. In particular,

y �→ f§(y) is a measurable complete derivative.

Proof. For y ∈ Y put

T (y) = {y∗ ∈ Y ∗ : ∀v ∈ Y 〈y∗, v〉 ≤ D̃f(y, v)}.

Since the functions v → D̃f(y, v) are Lipschitz, convex, and subadditive, the Hahn-
Banach Theorem implies that T (y) �= ∅ for each y ∈ Y . Moreover, each T (y) is
clearly w∗-closed and bounded, hence w∗ compact. We prove that T is a norm to
w∗ Borel measurable multivalued mapping. To this end it is sufficient to prove that
for every v ∈ Y and every c ∈ R the set

Av,c = {y ∈ Y : T (y) ∩ {y∗ : 〈y∗, v〉 > c} �= ∅}
is Borel measurable. By the Hahn-Banach Theorem and by Lemma 1.4,

Av,c = {y : D̃f(y, v) > c} =
⋃
i

{y : D̃f(y, v + wi)− D̃f(y, v) > c},

where wi is any sequence of elements of Y dense in Y . Hence Lemma 1.4 implies
that Av,c is Borel measurable. The first statement of the proposition now follows
by the Kuratowski-Ryll-Nardzewski selection theorem (see [26]).

If Y ∗ is separable, w∗ and norm Borel sets in Y ∗ coincide, which implies the
second statement of the proposition. �

6.5. Remark. On may, of course, try to impose other conditions on f§ in Proposi-
tion 6.4. The most natural would be to require the lower bound by the correspond-
ing lower derivative, i.e., that for all y, v ∈ Y ,

−D̃(−f)(y, v) ≤ 〈f§(y), v〉 ≤ D̃f(y, v).
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Since −D̃(−f)(y, v) ≤ D̃f(y, v), the only difference in the proof would be the
difference in non-emptiness criteria and therefore in the use of the Hahn-Banach
Theorem.

Chain rule and subdifferential. We first give an example showing that the chain
rule fails with the Michel-Penot subdifferential and then show, as promised in the
introduction, that it holds with the upper Dini subdifferential.

6.6. Example. For x ∈ R let ψ(x) be its distance to the nearest integer. Denote
e1, e2 the standard basis of R

2, define f(xe1 + 2−ke2) = 2−kψ(2k−2x) for k =
0, 1, 2, . . . and x ∈ R, f(xe1 + ye2) = 0 if y ≤ 0, observe that f is Lipschitz on its
domain, and extend it to a Lipschitz function from R

2 to R. Then, for a.e. x ∈ R,

lim sup
k→∞

2k(f(xe1 + 2−ke2 + 2−ke1)− f(xe1 + 2−ke2)) ≥ 1/4.

Indeed, for almost every x ∈ R there are infinitely many k for which one can
find an integer n such that n ≤ 2k−2x ≤ n + 1/4, and for any such k we have
2k(f(xe1 +2−ke2 +2−ke1)− f(xe1 +2−ke2)) = ψ(2k−2x+1/4)−ψ(2k−2x) = 1/4.

It follows that for a.e. x ∈ R there is ξ(x) belonging to the Michel-Penot sub-
differential of f at xe1 such that ξ(x)(e1) = 1/4. So with g : R �→ R

2 defined by
g(x) = xe1 we do not get that (f ◦ g)′ = ξ(g(x))(g′) a.e.

6.7. Definition. The upper Dini subdifferential ∂Df(y) of a locally Lipschitz func-
tion f : Y → R at a point y ∈ Y is

∂Df(y) = {y∗ ∈ Y ∗ : y∗(v) ≤ D̃f(y, v) for every v ∈ Y }.
6.8. Theorem. Suppose f : Y → R and g : X → Y are locally Lipschitz maps,
where X,Y are separable Banach spaces and Y has the Radon-Nikodym property.
Then for L almost all x ∈ X,

∂D(f ◦ g)(x) = (∂Df(g(x))) ◦ g′(x).
Proof. For each y ∈ Y choose some f§(y) ∈ ∂Df(y). Let U(f, y) be the assign-
ment from Proposition 5.1(iii). Since f§(y) is a complete derivative and U(f, y)
a complete assignment, for L almost all x ∈ X both g′(x) and (f ◦ g)′(x) exist,
(f ◦ g)′(x) = f§(g(x)) ◦ g′(x) and the range of g′(x) is contained in U(f, g(x)).

Since D̃f(g(x)) is linear on U(f, g(x)), the restrictions of f§(g(x)) and any y∗ ∈
∂Df(g(x)) to U(f, g(x)) coincide. Hence y∗ ◦ g′(x) = f§(g(x)) ◦ g′(x) = (f ◦ g)′(x)
for every y∗ ∈ ∂Df(g(x)). �
Existence and measurability for reflexive target spaces. We start with a
special case of a result due to Lindenstrauss [27], whose simple proof is due to
Pelczynski [34]. Both proofs may be found in [4, Theorem 7.2].

6.9. Lemma. If Y and Z are Banach spaces, Z is reflexive, and f : Y �→ Z is
K-Lipschitz on a neighborhood of y and Gâteaux differentiable in the direction of
a linear subspace U ⊂ Y , then there is a linear mapping L : Y �→ Z of norm at
most K such that f ′(y; v) = L(v) for all v ∈ U .

6.10. Proposition. Let Y be a separable Banach space and let Z be a separable
reflexive space. Whenever y ∈ Y �→ f�(y) is a measurable complete derivative
assignment for a Lipschitz f : Y �→ Z, then there is a Borel measurable complete
derivative f§(y) such that f§(y)(v) = f�(y)(v) for every y ∈ Y and every v in the
domain of f�(y).
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Proof. Suppose f is K-Lipschitz. The set L of linear mappings of Y to Z of norm
at most K considered in the topology of pointwise weak convergence is a compact
metrizable space. Denote, as always, by U(f, y) the domain of f�(y) and let

S := {(y, L) ∈ Y × L : L(u) = f ′(y; u) for all u ∈ U(f, y)}.
For every y ∈ Y the set {L ∈ L : (y, L) ∈ S} is compact and, according to
Lemma 6.9, non-empty. Provided S is Borel, we infer from the Kuratowski-Ryll-
Nardzewski selection theorem (see [26]) that there is Borel measurable f§ : Y �→ L

such that (y, f§(y)) ∈ S for every y ∈ Y . Clearly, this f§ has all properties required
from the complete derivative of f .

It remains to show that S is Borel. For this, let (wi, si) be a sequence dense in
Y × (0,∞), and denote

Si = {(y, L) ∈ Y × L : B(wi, si) ∩ U(f, y) = ∅}
and

Ti = {(y, L) ∈ Y × L : dist(L(wi),Dδf(y, wi)) ≤ 4Ksi + diam(Dδf(y, wi))∀δ > 0}.
These sets are Borel, Si by Lemma 6.1, and Ti by Lemma 1.4. We let

T =
∞⋂
i=1

(Si ∪ Ti)

and finish the proof by showing S = T.
If (y, L) ∈ S and B(wi, si) ∩ U(f, y) �= ∅, we choose u ∈ B(wi, si) ∩ U(f, y) and

use Lemma 2.3 to estimate

dist(L(wi),Dδf(y, wi)) ≤ 2K ‖u− wi‖+ dist(L(u),Dδf(y, u))

≤ 2K ‖u− wi‖+ diam(Dδf(y, u))

≤ 4K ‖u− wi‖+ diam(Dδf(y, wi))

≤ 4Ksi + diam(Dδf(y, wi)).

If (y, L) ∈ T, u ∈ U(f, y), and ε > 0, we find i such that ‖wi−u‖ < ε/2 < si < ε

and infer from B(wi, si) ∩ U(f, y) �= ∅ that

dist(L(u),Dδf(y, u)) ≤ 2Ksi + dist(L(wi),Dδf(y, wi))

≤ 6Ksi + diam(Dδf(y, wi))

≤ 8Ksi + diam(Dδf(y, u)).

Choosing δ small enough we conclude ‖L(u) − f ′(x; u)‖ < 8Kε, implying L(u) =
f ′(y; u), and so (y, L) ∈ S. �

7. Chain rule when the inner function is not Lipschitz

This section is devoted to the situation in which a finite dimensionality assump-
tion helps to strengthen the chain rule to cases when the innermost function is not
assumed to be Lipschitz. Two such extensions are of interest: the pointwise chain
rule at almost all points at which the inner function is differentiable and the chain
rule treated in [2] for the weak derivative when the inner function is of bounded
variation. Because of Theorem 4.3 it suffices to state the results for composition of
two functions only.

The pointwise case is handled by reducing it to the Lipschitz situation for count-
ably many mappings.
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7.1. Lemma. Let f be a Borel measurable map of a separable Banach space X to
a Banach space Y . Then the set

E :=
{
x ∈ X : lim sup

t↘0

‖f(x+ tu)− f(x)‖
t

< ∞ for every u ∈ X
}

can be covered by countably many Borel sets on each of which f is Lipschitz.

Proof. For x ∈ X and k, l ∈ N denote

Vk,l(x) := {v ∈ X :
∥∥f(x+ 2−lv)− f(x)

∥∥ ≤ 2−lk} and Vk(x) =
∞⋂
l=0

Vk,l(x).

We first show that for every u, z ∈ X, r > 0, and k ≥ 0, f is Lipschitz on the
set A of those x ∈ B(z, r/4) for which B(u, r) \ Vk(x) is meager. To see this,
consider any x, y ∈ A, x �= y and find l ≥ 0 so that 2−l−2r < ‖x− y‖ ≤ 2−l−1r.
Since (B(u, r) \ Vk(x)) and (B(u, r) \ Vk(y)) − 2−l(x − y) are both meager and
B(u, r)− 2−l(x− y) ⊃ B(u, r/2), there is

v ∈ B(u, r/2) ∩ Vk(x) ∩ (Vk(y)− 2−l(x− y)).

Since v ∈ Vk(x),
∥∥f(x+ 2−lv)− f(x)

∥∥ ≤ 2−lk, and, since w := v+2l(x−y) ∈ Vk(y),

we also have
∥∥f(y + 2−lw)− f(y)

∥∥ ≤ 2−lk. But x + 2−lv = y + 2−lw, implying

that ‖f(x)− f(y)‖ ≤ 2−l+1k ≤ (8k/r) ‖x− y‖.
Next we show that the set E defined in the hypothesis of the lemma can be

covered by countably many sets of the above form. Let ui ∈ X be dense in X and
denote by Ei,j,k the set of x ∈ X for which B(ui, 2

−j) \ Vk(x) is meager. Given
any x ∈ E, the definition of E shows that

⋃∞
k=0 Vk(x) = X. By the Baire category

theorem there is k such that Vk(x) is not meager. Since Vk(x), being Borel, has the
Baire property, its complement is meager in some non-empty open set. Hence there
are i, j ∈ N such that B(ui, 2

−j) \ Vk(x) is meager. It follows that Ei,j,k cover E,
and so do the sets Ei,j,k ∩B(ul, 2

−j−2) on which, as shown above, f is Lipschitz.
From the above argument it may not be apparent that the sets we have con-

structed are Borel. However, they can be easily made Borel, since whenever f is
Lipschitz on A, we can extend it to a Lipschitz function g on A and observe that f
is Lipschitz on the set {x ∈ A : f(x) = g(x)} which is Borel and contains A. �

7.2. Lemma. Let f, g : X → Y be Borel measurable maps between separable Banach
spaces X and Y . Then the set

{x ∈ X : f(x) = g(x), both f and g are Gâteaux differentiable at x, f ′(x) �= g′(x)}

is σ-directionally porous.

Proof. Replacing f by f − g, we may assume that g = 0. Let E = {x : f(x) = 0},
and for x ∈ E and k, l,m ∈ N, denote

Vk,z(x) := {v ∈ X : ‖f(x+ tv)− tz‖ < 1
2 |t| ‖z‖ for |t| < 2−k}.

Fix for a while u ∈ X, r > 0, z ∈ Y and k ∈ N and let A be the set of those
x ∈ E for which B(u, r) \ Vk,z(x) is meager. We show that A is porous in the
direction of u. To see this, consider any x ∈ A and suppose there are 0 < t < 2−k

and y ∈ A such that ‖y − x− tu‖ < rt/2; in other words ‖(y − x)/t− u‖ < r/2.
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Since B(u, r) \ Vk,z(x) and (y − x)/t − (B(u, r) \ Vk,z(x)) are both meager and
(y − x)/t−B(u, r) ⊃ B(u, r/2), there is

v ∈ B(u, r/2) ∩ Vk,z(x) ∩ ((y − x)/t− Vk,z(y)).

Since |t| < 2−k and v ∈ Vk,z(x), ‖f(x+ tv)− tz‖ < 1
2 |t| ‖z‖. Observing that

w := −v + (y − x)/t ∈ Vk,z(y), we also have ‖f(y − tw) + tz‖ < 1
2 |t| ‖z‖. But

x + tv = y − tw, and so 0 = ‖2tz + f(x+ tv)− tz − (f(y − tw) + tz)‖ > |t| ‖z‖
provides the required contradiction.

It remains to show that E can be covered by countably many sets of the above
form. Let ui ∈ X be dense in X, zl ∈ Y dense in Y and denote by Ei,j,k,l the set
of x ∈ X for which B(ui, 2

−j) ∩ Vk,zl(x) is meager. Given any x ∈ E, any v ∈ X
for which f ′(x; v) �= 0 belongs to Vk,zl(x) once k is sufficiently large and zl is close
enough to f ′(x; v). Hence

⋃∞
k=0

⋃∞
l=0 Vk,zl(x) contains all v ∈ X with f ′(x; v) �= 0,

and by the Baire category theorem there are k, l such that Vk,zl(x) is not meager.
Since Vk,zl(x), being co-Suslin, has the Baire property, its complement is meager in
some non-empty open set. Hence there are i, j ∈ N such that B(ui, 2

−j) \ Vk,zl(x)
is meager. It follows that Ei,j,k,l are directionally porous sets covering E. �

7.3. Proposition. Suppose Y, Z are separable Banach spaces and f : Y → Z is a
Lipschitz function having a derivative assignment y ∈ Y → f�(y). Then for every
finite dimensional X and Borel measurable g : X → Y , f◦g is Gâteaux differentiable
at L almost every point x at which g is, and (f ◦ g)′(x) = f�(g(x)) ◦ g′(x).

Proof. By Lemma 7.1 there are Borel sets Fk ⊂ X such that g is Lipschitz on each
Fk and the union of the Fk contains all points of Gâteaux differentiability of g. By
[29, Lemma 5.5.3] we may extend the restriction of g to Fk to a Lipschitz function
gk : X → Y . Since the chain rule holds for the compositions f ◦ gk, we just have
to establish that g′k(x) = g′(x) for all x ∈ Fk except for a set belonging to L. But
this was shown in Lemma 7.2. �

In the case when X = R, Y has the Radon-Nikodym property, g : R → Y
has bounded variation and f : Y → Z is a Lipschitz map with a derivative as-
signment f�, g is differentiable almost everywhere and so the previous proposition
implies that (f ◦ g)′(x) = f�(g(x)) ◦ g′(x) at almost every x ∈ R (where almost ev-
ery means with respect to the Lebesgue measure). However, in contrast to the case
when g is Lipschitz, f ◦g cannot be fully recovered from its derivative. We therefore
show that a natural formula transforming the distributional derivative of g (which
is a measure) into the distributional derivative of f ◦ g also holds, thus replacing
the g-dependent direction of differentiability in the result of [2] by an f -dependent
choice of the domain of f�. We treat only the case of the one dimensional do-
main, since the extension to higher dimensions can be obtained by repeating the
arguments of [2], but we treat the problem in a somewhat more general setting.
Assuming that a function g : R → Y is such that for some Radon measure μ in R

and μ-Bochner integrable ϕ : R → Y , one has g(v) − g(u) =

∫
(u,v]

ϕ(s) dμ(s) for

every interval (u, v] ⊂ R, we show how to find a μ-Bochner integrable function that
integrates to (f ◦ g)(v)− (f ◦ g)(u), where f is a Lipschitz map having a derivative
assignment. Notice that such g is necessarily left continuous and is of bounded
variation, and that for any left continuous function g of bounded variation with
values in a space with the Radon-Nikodym property such ϕ and μ necessarily exist.
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To find a “derivative” of f ◦g, we will transform the given function g of bounded
variation into a Lipschitz function. This will be done with the help of the fact that
every Radon measure ν in R satisfying ν ≥ λ (where λ is the Lebesgue measure)
is an image of λ under a non-decreasing Lipschitz surjection q : R → R. (So, by
definition of image measures, ν(E) = λ(q−1(E)) for every Borel set E ⊂ R.) Such
a function q is easy to define: choosing s0 with μ({s0}) = 0, we let

q(t) = sup{s ≥ s0 : ν[s0, s] ≤ t} for t ≥ 0, and

q(t) = inf{s ≤ s0 : ν[s, s0] ≤ −t} for t < 0.

We also recall the formula for integration with respect to the image measure

(7.1)

∫
E

h(s) dν(s) =

∫
q−1(E)

h(q(t)) dt

whenever one of these integrals exists.

7.4. Theorem. Suppose that g : R → Y is such that for some Radon measure

μ in R and μ-Bochner integrable ϕ : R → Y , g(v) − g(u) =

∫
(u,v]

ϕ(s) dμ(s) for

every interval (u, v] ⊂ R. Letting S = {s ∈ R : μ({s}) > 0}, we have that for any
Lipschitz f : Y → Z with a derivative assignment f�,

f(g(v))− f(g(u))

=

∫
(u,v]∩S

f(g(s+))− f(g(s−))

μ(s)
dμ(s) +

∫
(u,v]\S

f�(g(s))ϕ(s)dμ(s)

for every interval (u, v] ⊂ R.

Proof. Define a new Radon measure ν on R by ν(E) = λ(E) +

∫
E

(1 + ‖ϕ‖) dμ.
Observing that μ is absolutely continuous with respect to ν and its Radon-Nikodym

derivative satisfies
dμ

dν
≤ 1

1 + ‖ϕ‖ , we let ψ = ϕ
dμ

dν
and infer that ‖ψ‖ ≤ 1 and

g(v)− g(u) =

∫
(u,v]

ψ(s) dν(s) for every interval (u, v] ⊂ R.

Since ν ≥ λ, it is an image of λ under a non-decreasing Lipschitz surjection
q : R → R. The function ψ ◦ q is bounded and measurable; let h be its indefinite
Bochner integral. Then h is Lipschitz and h′ = ψ ◦ q, λ-a.e. For α, β ∈ q−1(R \ S),
α < β we have q−1(q(α), q(β)] = (α, β], which implies that

h(β)− h(α) =

∫ β

α

ψ(q(t)) dt = g(q(β))− g(q(α)),

using (7.1). Hence we may assume that h = g ◦ q on q−1(R \ S). When s ∈ S, the
function h has constant derivative ψ(s) on the interval q−1(s) , and we infer that h
is affine with values at the left and right end points g(s−) and g(s+), respectively.

Let f : Y → Z be Lipschitz with a derivative assignment f�. Then f ◦ h, being
Lipschitz and a.e. differentiable, is an indefinite Bochner integral of its derivative.
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Hence, given any u, v ∈ R, u < v and denoting (α, β] = q−1(u, v],

f(g(u))− f(g(v))

= f(h(β))− f(h(α)) =

∫ β

α

(f ◦ h)′(t) dt

=
∑

s∈(u,v]∩S

∫
q−1(s)

(f ◦ h)′(t) dt+
∫
q−1((u,v]\S)

f�(g(q(t)))ψ(q(t)) dt

=
∑

s∈(u,v]∩S

(f(g(s+))− f(g(s−))) +

∫
(u,v]\S

f�(g(s))ψ(s)dν(s)

=

∫
(u,v]∩S

f(g(s+))− f(g(s−))

μ(s)
dμ(s) +

∫
(u,v]\S

f�(g(s))ϕ(s)dμ(s). �

8. Final remarks

In this section we briefly indicate how our results may be used to prove some
known differentiability results, including Rademacher’s and Aronszajn’s theorems
and existence of intermediate derivatives. The ideas of these proofs are by now
standard: the main point, Lebesgue’s differentiation theorem, has been key already
to the first infinite dimensional differentiability results in [3, 9, 30], the finite di-
mensional version is very close to [33], and the porosity approach has already been
used also in the infinite dimensional case, both in studying differentiability and
intermediate differentiability, for example in [5, 23, 37].

8.1. Corollary. Let f be a locally Lipschitz mapping of a separable Banach space
X to a Banach space Y . Then there is a σ-directionally porous subset P of X such
that for every x ∈ X \P the set Vx of those directions in which f is differentiable is
a closed linear subspace of X and the mapping v → f ′(x; v) is a continuous linear
mapping of Vx to Z.

Proof. The statement follows immediately from Corollary 2.14, Proposition 2.22
used with Φ being the collection of functions ‖y − y0‖ where y0 ∈ Y , and Exam-
ple 2.8(ii). �

As a special case of Corollary 8.1 we have

8.2. Corollary. Let f be a locally Lipschitz mapping of a separable Banach space
X to a Banach space Y . Let A be the set of all points x ∈ X for which there is a
subset Wx of X such that

(i) f ′(x; w) exists for all w ∈ Wx,
(ii) the closed linear span of Wx is X, and
(iii) f is not Gâteaux differentiable at x.

Then A is σ-directionally porous.

From the point of view of this paper, Aronszajn’s theorem [3] says that in sep-
arable Banach spaces L null sets are small in the sense of Aronszajn [3]. The
more familiar version that Lipschitz mappings of separable Banach spaces into
spaces having the Radon-Nikodym property are Gâteaux differentiable except for
an Aronszajn null set is, of course, equivalent to it (and is what we actually prove).
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8.3. Theorem. For every L null set E in a separable Banach space X and for every
sequence vn ∈ X whose linear span is dense in X there are Borel sets En ⊂ X such
that E ⊂

⋃
n En and, for every n, the set En has one dimensional measure zero on

every line in the direction of vn.

Proof. It clearly suffices to show that for any Lipschitz mapping f of X to a Banach
space Y with the Radon-Nikodym property, the set E of points at which f is
not Gâteaux differentiable has the claimed property. Let A be the σ-directionally
porous set from Corollary 8.2. Using Corollary 1.3, we write A =

⋃
(A+

n ∪ A−
n ),

where A±
n is porous in the direction of ±vn. By [29, Lemma 10.1.4] we may find

Borel sets B±
n ⊃ A±

n which are also porous in the directions ±vn. We observe that
the intersection of B±

n with every line L in the direction of vn is a porous set in L,
therefore of one dimensional measure zero.

Let Cn be the set of points x ∈ X at which f is not differentiable in the direction
of vn. From Lemma 1.4 we infer that Cn are Borel sets and from the definition
of the Radon-Nikodym property that they have one dimensional measure zero on
every line in the direction of vn. Hence the sets En = B+

n ∪ B−
n ∪ Cn have the

required property. �

In another direction, a simple application of Theorem 3.6 concerns the somewhat
exotic notion of intermediate derivative: y∗ ∈ Y ∗ is said to be an intermediate de-
rivative of a function f : Y �→ R at a point y ∈ Y if Df(y, v) ≤ 〈y∗, v〉 ≤ Df(y, v)
for every v ∈ V . Locally Lipschitz functions on separable, and even some non-
separable, Banach spaces are known to possess the intermediate derivative generi-
cally; see, e.g., [16, 17]. In the separable case we improve the existence statement
from a generic result to a σ-directionally porous one.

8.4.Corollary. Let f be a real-valued locally Lipschitz function on an open subset H
of a separable Banach space Y . Then f has an intermediate derivative at all points
of H, except those which belong to a σ-directionally porous set.

Proof. Let Q ⊂ Y be a σ-directionally porous set with the properties from Propo-
sition 3.6 and Theorem 3.2. If y ∈ H \ Q, the function v �→ Df(y, v) is convex,
continuous and positively homogeneous, so the Hahn-Banach Theorem provides us
with y∗ ∈ Y ∗ such that 〈y∗, v〉 ≤ Df(y, v) for every v ∈ Y . Multiplying the in-
equality 〈y∗,−v〉 ≤ Df(y,−v) by −1 and using that Df(y, v) = −Df(y,−v) by
Theorem 3.2, we obtain that Df(y, v) ≤ 〈y∗, v〉, so y∗ verifies the requirements
from the definition of the intermediate derivative. �
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[32] J. Nájares R. and L. Zaj́ıček, A σ-porous set need not be σ-bilaterally porous, Comment.
Math. Univ. Carolin. 35 (1994), no. 4, 697–703. MR1321240 (96b:26004)
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[34] A. Pe�lczyński, Linear extensions, linear averagings, and their applications to linear topolog-
ical classification of spaces of continuous functions, Dissertationes Math. Rozprawy Mat. 58
(1968), 92. MR0227751 (37 #3335)

[35] D. Preiss,Differentiability of Lipschitz functions on Banach spaces, J. Funct. Anal. 91 (1990),
no. 2, 312–345, DOI 10.1016/0022-1236(90)90147-D. MR1058975 (91g:46051)
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[38] Hans Rademacher, Über partielle und totale differenzierbarkeit von Funktionen mehrerer
Variabeln und über die Transformation der Doppelintegrale (German), Math. Ann. 79 (1919),
no. 4, 340–359, DOI 10.1007/BF01498415. MR1511935

[39] Z. Zahorski, Punktmengen, in welchen eine stetige Funktion nicht differenzierbar ist
(Russian., with German summary), Rec. Math. [Mat. Sbornik] N. S. 9 (51) (1941), 487–
510. MR0004869 (3,73h)
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