Assessed Example Sheet 1. MSM3A05/MSM4A05 Due to be handed in at 10am Tuesday 1st November.

QUESTION 1. Arrange the following in descending order for small ϵ [3 MARKS]

$$\epsilon^{\nu}$$
, $\epsilon^{-\mu}$, $\ln\left(\frac{1}{\epsilon}\right)$, $\epsilon^{-\nu}$, ϵ , $e^{-\frac{1}{\epsilon}}$, ϵ^{μ} ,

where $\nu = 10^{-100}$ and $\mu = 10^{100}$.

QUESTION 2. Find an asymptotic expansion of the function $\ln(1+x)$ using the sequence of functions $\{1, \sin x, \sin^2 x, \sin^3 x \cdots\}$ as $x \to 0$. That is find a_0, a_1, a_2 and a_3 where

$$\ln(1+x) = a_0 + a_1 \sin x + a_2 \sin^2 x + a_3 \sin^3 x + \cdots$$

QUESTION 3*. Use Laplace's method to show that the modified Bessel function $K_{\nu}(z)$, which has the integral representation

$$K_{\nu}(z) = \frac{1}{2} \int_{-\infty}^{\infty} e^{\nu t - z \cosh t} dt \tag{1}$$

can be approximated as $\nu \to \infty$, with z = O(1) and positive, using

$$K_{\nu}(z) \sim \sqrt{\frac{\pi}{2\nu}} e^{-\nu} \left(\frac{2\nu}{z}\right)^{\nu}.$$
 (2)

[Hint: First find the local maximum of the exponent in (1) and call this $t = t_{\text{max}}$. You will then need to use the identity $\sinh^{-1} y = \ln \left(y + \sqrt{1 + y^2} \right)$ to find a suitable representation of t_{max} . Then use Laplace's method as in the notes to find (2).]

QUESTION 4. Use Watson's lemma to determine

MARKS

$$\int_0^\infty e^{-xs} \left(1 + \frac{is}{5}\right)^{-\frac{1}{2}} ds \quad x \to \infty.$$

* denotes a difficult question.

JU 15/10/12