
Revision Notes For Perturbation Theory: Summer 2013

Order Symbols and Sequences

We say f(x) is order or O(g(x)) as x→ x0 if the limit

lim
x→x0

f(x)

g(x)
= A,

where A is a nonzero finite constant.

Watson’s Lemma

I(x) =

∫ b

0

e−xttλf(t)dt, (b > 0), (1)

where

• (i) λ > −1,

• (ii) f(t) is exponentially bounded in the interval 0 ≤ t ≤ b,

• (iii) f(t) possesses a Maclaurin series expansion.

If these conditions are met then we may say that

I(x) ∼
∞∑
n=0

f (n)(0)

n!

Γ(λ+ n+ 1)

xλ+n+1
, as x→∞. (2)

Firstly, condition (i) above is the extent to which the integrand may be singular near t = 0 while ensuring
the existence of the integral. Condition (ii) can be expressed as |f(t)| < Kect when t ∈ [0, b] for some fixed
constants K and c. This ensures that the term e−xt dominates the integrand away from the lower limit
(which is t = 0 here) when the x is large. This means that when b = ∞, we may have f(t) = et, e10t,

etc. but it does not1 allow f(t) = et
2

. An exponential bound also avoids having expressions of the form
f(t) = 1/(1 − t) for t ≥ 1. Condition (iii) allows f(t) to be replaced by an expression which describes its
behaviour in the region of dominant contribution (t = 0).

Expansion with a small parameter

Consider the function

f(x; ε) =
x
√

1 + εx

x+ ε
, x ≥ 0, (3)

with ε→ 0+ for x = O(1) we write

f(x; ε) =
(

1 +
ε

x

)−1
(1 + εx)

1
2 . (4)

Two applications of the binomial expansion yields

f(x; ε) ∼ 1 + ε

(
x

2
− 1

x

)
ε→ 0+. (5)

The domain of f is x ≥ 0 and so we must consider x→ 0 and x→∞; in either case the asymptotic expansion
(5) breaks down. For x → 0 the breakdown occurs where x = O(ε) (which is taken from ε/x = O(1)); for
x→∞, the breakdown is where x = O(ε−1) (which is taken from εx = O(1).

1This is because we would then have a term like e−xt · et2 in which the term et
2
dominates the term e−xt as t→∞.
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Laplace Method

Consider the integral

I(x) =

∫ b

a

e−
1
t−a e−x(t−a)

2

dt, a < b, (6)

for large positive x. Now since e−1/(t−a) tends to zero much faster than any power of (t−a), the contribution
to the integral from the neighbourhood of t = a is exponentially small so application of Watson’s lemma
does not yield its asymptotic form. We should not lose all hope since progress can be made if we first rewrite
I(x) as

I(x) =

∫ b

a

eh(x,t)dt, (7)

where h(x, t) = −(t − a)−1 − x(t − a)2. Now since h′(t) = (t − a)−2 − 2x(t − a), stationary values occur

when (t − a)−2 = 2x(t − a), i.e, t = a + (2x)−
1
3 . The location of this maximum is a function of x so we

need to transform the variable of integration so that the maximum of the exponent is independent of x. Let
t− a = x−

1
3 s and so we can rewrite I(x) as

I(x) = x−
1
3

∫ (b−a)x
1
3

0

e−x
1
3 (s2+ 1

s )ds = x−
1
3

∫ (b−a)x
1
3

0

e−x
1
3 h(s)ds. (8)

The maximum value of h(s) = −(s2 + 1
s ) occurs at s = 2−

1
3 . The details are as follows, h′(s) = −2s+ 1/s2

hence h′(s) = 0 when 2s = 1/s2 or s3 = 1
2 , i.e., s = 2−

1
3 , now h′′(s) = −2−2/s3, so h′′(2−

1
3 ) = −2−2/2−1 =

−6 and therefore h(s) does indeed have a relative maximum at s = 2−
1
3 .

We now expand h(s) about this maximum so that we have

h(s) = h(2−
1
3 ) + h′′(2−

1
3 )

(s− 2−
1
3 )2

2!
+ · · ·

= −2
1
3

3

2
− 3(s− 2−

1
3 )2 + · · · (9)

We now let τ2 = 3x
1
3 (s− 2−

1
3 )2 so that ds = dτ/

√
3x

1
3 . After substituting into (8) and replacing upper and

lower integration limits by ∞ and −∞ we have

I(x) ∼ e−
3
2 (2x)

1
3

√
3x

∫ ∞
−∞

e−τ
2

dτ

∼
(

π

3x
1
3

) 1
2

e−
3
2 (2x)

1
3 (10)

Boundary Layers

We begin with an example,
Consider the differential equation below

εy′′ + xy′ + y = 0, −4 ≤ x ≤ −2, 0 < ε� 1, y(−4) = 1, y(−2) = 0.

(a) Assume that the boundary layer is located at x = −2. Write down a one term outer solution.
(b) Write down a one term inner expansion.
(c) Match these two expansions to find a one term composite solution.
This has the following solution... (a)

xy′ + y = 0 y(−4) = 1,

which has solution

y =
−4

x
.

(b) In this case we let x = −2 + ελX and find that the equation now reads

ε1−2λYXX + (−2 + ελX)ε−λYX + Y = 0,
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from which it follows that λ = 1. Therefore we have

YXX − 2YX = 0,

which may be solved at leading order to yield

Y0 = Ae2X +B,

which on using the inner boundary condition becomes Y0 = A(e2X − 1).
(c) In order to match we note that

lim
x→−2

−4

x
= lim
X→−∞

A(e2X − 1)

and so 2 = −A or A = −2 and hence we have the composite solution

y ∼ −4

x
− 2e2X ∼ −4

x
− 2e

2x+4
ε .

Next we will examine the following problem for this part of the course

εy′′ + yy′ − y = 0 for 0 ≤ x ≤ 1,

subject to
y(0) = α, y(1) = β,

where α and β are constants with ε� 1.

(a) Assume that a boundary layer exists at x = 0. Find the leading order outer and inner solution when
α = 0 and β = 3.
(b) Assume that an interior layer exists at x = x0. Find the leading order outer and inner solution, and
hence, show that x0 = 1/2 when α = −1 and β = 1.
Which has solution....
a) Assuming that a boundary layer exists at x = 0 we have for a one term outer solution the need for solving

y0(y′0 − 1) = 0, y0(1) = 3, ⇒ y0 = x+ 2.

For the inner solution we require the scaling x = ελX, y = Y which gives the differential equation

ε1−2λYXX + ε−λY YX − Y = 0. (11)

Seeking a distinguished limit we find that to keep the most terms (including the highest derivative) we need
λ = 1 for a leading order balance, and so at leading order we have

Y0XX + Y Y0X = 0. ⇒ Y0X +
Y 2
0

2
= K, (12)

where K is a constant. Since the outer solution has y0 → 2 as x → 0 we need Y0 → 2 and Y0X → 0 as
X →∞. This means that K = 2 and so

Y0X +
Y 2
0

2
= 2, (13)

and so
dY0
dX

=
4− Y 2

0

2
⇒ dY0

4− Y 2
0

=
1

2
dX ⇒

∫ (
1

4(2− Y0)
+

1

4(2 + Y0)

)
dY0 =

X

2
+ C,

where C is a constant, consequently we have

ln
2 + Y0
2− Y0

= 2X + C.
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Using Y0(0) = 0 we have C = 0 and so we may write

Y0(X) = 2
e2X − 1

e2X + 1
= 2 tanh (X) .

(b) If we are now given the boundary conditions y(0) = −1, y(1) = 1 and we assume that the boundary layer
is located at x0 ∈ (0, 1) then we will have two outer solutions

y0(x) =

{
x− 1 : 0 ≤ x < x0,
x : x0 < x ≤ 1,

(14)

For the inner solution we require the scaling x = x0 + ελX, y = Y which gives the differential equation

ε1−2λYXX + ε−λY YX − Y = 0. (15)

Seeking a distinguished limit we find that to keep the most terms (including the highest derivative) we need
λ = 1 for a leading order balance, and so at leading order we have

Y0XX + Y Y0X = 0. ⇒ Y0X +
Y 2
0

2
= K. (16)

Now the outer solution has y → x0 as x → x+0 and y → x0 − 1 as x → x−0 . Thus for matching we need as
X →∞, Y0 → x0, Y0X → 0 and as X → −∞ Y0 → x0 − 1 and Y0X → 0. Thus we have

K =
(x0 − 1)2

2
=
x20
2
⇒ x0 =

1

2
,K =

1

8
.

We thus have

Y0X +
Y 2
0

2
=

1

8
, (17)

and so
dY0
dX

=
1
4 − Y

2
0

2
⇒ dY0

1
4 − Y

2
0

=
1

2
dX ⇒

∫ (
1

( 1
2 − Y0)

+
1

1
2 + Y0

)
dY0 =

X

2
+ C,

where C is a constant, consequently we have

ln
1
2 + Y0
1
2 − Y0

=
X

2
+ C.

Using Y0(1/2) = 02we have C = 0 and so we may write

Y0(X) =
eX/2 − 1

2eX/2 + 1
=

1

2
tanh

(
X

4

)
.

Now consider another problem given by Consider the problem

ε
d2y

dx2
+ xn

dy

dx
− xmy = 0, 0 < ε� 1, 0 < x < 1, y(0) = α, y(1) = β, (18)

where α, β, n and m are real constants.

Assume that a boundary layer exists at x = 0.

(a) Find a one term outer solution.

(b) Re-scale using an inner variable and obtain distinguished limits of equation (18) [Hint: there are three
distinguished limits].

2If we have Y0 → 1/2 as X →∞ and Y0 → −1/2 as X → −∞ then in the limit ε→ 0 the boundary layer will be very thin
and will mean that Y0(0) = 0
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(c) Find the conditions under which no distinguished limit exists and therefore there is no boundary layer
at x = 0.
Which has solution.......

(a)If we assume that a boundary layer exists at the origin then we can form an outer solution

y ∼ yo = y0(x) + εy1(x) + · · ·

which when substituted into our differential equation gives at leading order

xny′0 − xmy0 = 0. (19)

Since this is the outer solution it must satisfy the boundary condition y0(1) = β. The solution to this
equation depends upon n and m and is given by

y0 = βx, if n = m+ 1, (20)

or

y0 = β exp

[
xm−n+1 − 1

m− n+ 1

]
, if n 6= m+ 1. (21)

(b) To determine an inner expansion we seek a re-scaling such that we have x = ελX where λ > 0. In
the boundary layer we seek the expansion y = Y = Y0(X) + εY1(X) + · · · whence our differential equation
becomes

ε1−2λ
d2Y

dX2
+ ε(n−1)λXn dY

dX
− εmλXmY = 0. (22)

We now search for distinguished limits of this equation (noting that in each case we are seeking to keep the
highest derivative and as much terms as possible). It turns out there are three separate cases to consider

• λ = (m+ 2)−1,

d2Y

dX2
+Xm+1 dY

dX
−XmY = 0, if n−m = 1 and m 6= −2 (23)

• λ = (n+ 1)−1,
d2Y

dX2
+Xn dY

dX
= 0, if n−m < 1 and n 6= −1 (24)

• λ = (m+ 2)−1,
d2Y

dX2
−XmY = 0, if n−m > 1 and m 6= −2 (25)

(c) There are no distinguished limits (and therefore no boundary layer at the origin) when

• n = −1 and m ∈ (−2,∞)

• m = −2 and n ∈ [−1,∞)

Multiple Scales

We will go through the following question for this part of the course.
Consider the equation

d2u

dt2
+ ω2

0u = εu

(
du

dt

)2

, 0 < ε� 1, t > 0, (26)

where ω0 is a real positive constant.
(a) Seek a straightforward expansion of the form u = u0(t) + εu1(t) + · · · and after substituting into (26)
obtain a set of differential equations involving u0(t) and u1(t).

(b) Show that u0(t) = a cos(ω0t + b) satisfies your differential equation for u0(t) above (where a and b

5



are constants).

(c) Now, using the solution for u0(t) in (b) or otherwise, solve the differential equation in (a) to find
an expression for u1(t). You may use the identity cos3 θ = 1

4 cos 3θ + 3
4 cos θ.

(d) Hence, using u0(t) and u1(t) write down a two term expansion for u(t) and comment on the region
for which this expansion is not valid (i.e., the region of non-uniformity). Explain why this is so (one line
answer needed only).

(e) Use the expansion u = u0(t, T ) + εu1(t, T ) + · · · where T = εt and substitute into (26) and equate
coefficients of ε to form a differential equation for u0(t, T ) and u1(t, T ).

(f) Show that u0(t, T ) = A(T )eiω0t + Ā(T )e−iω0t (where Ā is the complex conjugate of A) is a solution
to the first differential equation obtained in (e).

(g) Using the second differential equation obtained in (e) find an expression involving A and Ā which
must be satisfied in order to eliminate secular terms.

Answer: (a)Using the expansion given we find, after collecting terms in ε

ü0 + ω2
0u0 = 0, (27)

ü1 + ω2
0u1 = u̇20u0. (28)

(b) Simple exercise.
(c) We have

ü1 + ω2
0u1 = a3ω2

0 cos(ω0t+ β) sin2(ω0t+ β)

=
a3ω2

0

4
[cos(ω0t+ β)− cos(3ω0t+ 3β)] (29)

A particular solution for u1 is given by

u1 =
1

8
a3ω0t sin(ω0t+ β) +

1

32
a3 cos(3ω0t+ 3β). (30)

(d)

u = a cos(ω0t+ β) +
εa3

32
[4ω0t sin(ω0t+ β) + cos(3ω0t+ 3β)] + · · · (31)

This equation is not valid for t ≥ O(ε−1) since the second term becomes larger than the first in this interval.
(e) Using the expansion given we have

∂2u0
∂t2

+ ω2
0u0 = 0, (32)

∂2u1
∂t2

+ ω2
0u1 = −2

∂2u0
∂t∂T

+

(
∂u0
∂t

)
u0. (33)

(f) Again a simple exercise.
(g) Using (f) we have

∂2u1
∂t2

+ ω2
0u1 = −2iω0A

′(T )eiω0t + ω2
0A

2(T )Ā(T )eiω0t − ω2
0A

3(T )e3iω0t + cc (34)

We want to avoid secular terms which arise if the coefficient of eiω0t is non-zero. Hence we require,

2i
dA

dT
− ω2

0A
2Ā = 0. (35)
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Next Consider the differential equation

ü+ ω2
0u = u5, 0 <� 1.

Use the method of multiple scales to determine a first uniform approximation.
We begin by writing out the expansion of u in two variables

u = u0(t, T ) + εu1(t, T ) + · · · ,

where T = εt and rewriting the differential equation using two independent variables such that we have at
leading order

∂2u0
∂t2

+ ω2
0u0 = 0, (36)

∂2u1
∂t2

+ ω2
0u1 = −2

∂2u0
∂t∂T

+ u̇50. (37)

A solution of the first equation may be written as

u0 = A(T )eiω0t + Ā(T )e−iω0t,

whence the second equation above becomes

∂2u1
∂t2

+ ω2
0u1 = −2iω0A

′eiω0t + 10A3Ā2 + c.c+ non secular terms.

We seek to eliminate the secular terms so we require

iω0A
′ = 5A3Ā2,

which when we substitute A = R(T )eiθ(T ) to separate out real and imaginary parts we have

∂R

∂T
= 0,

−ω0
∂θ

∂T
= 5R4.

From the first equation we have R must be a constant, say R = α, whilst the second equation then reveals
that

θ = − 5

ω0
α4T + β,

hence we have a first order uniform approximation as

u ∼ α exp

(
i

(
− 5

ω0
α4T + β

)
+ iω0t

)
+ α exp

(
−i
(
− 5

ω0
α4T + β

)
− iω0t

)
,

∼ α cos

((
1− 5

ω2
0

εα4

)
ω0t+ β

)
.
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