Solutions to Problem Sheet 4. MSM3A05/MSM4AO05.

Question 1.
We have that

JD(Q;) = %Re {A eim cosﬁ'dg} .

Here we have that 9(6') = cosf and ¢'(9) = — siné and so there are two stationary points, one at 8§ = 0 and
the other at § = 7. We therefore have g(0) =1 —62/2+--. and g(8) = -1+ (0 — =) +- -+ at the two
stationary points respectively. Consequently, we have
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We can simplify the above integrals by letting the limits go to infinity and minus infinity respectively and
choosing u = +//26 and v = /2/2(§ — ) in the first and second integral respectively, we then have
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Usmg the identities from our notes we have ..
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and thus
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Since cos ¢ = cos{—8) we have

(1) \f:?_r—’; {cos (q, - E) +cos (Zb - E)] = % cos (.’;:~ g) :

Question 2.
We have

b
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Since g(t) has a stationary point at ¢ = tg and ¢”{tg) # 0 we have

90) = glto) + 39" (10}t~ 1)

Thus we have
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If we let 2 = sgn(g™ (o)) then we can choose a transformation v = (t — 1) ((:r/6)|g“’(to)|)% to get
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(See examples class for explanation why).

We therefore have : )
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We have that



Question 3.

Here we can use the—i-deas—ﬁ:anfl—(;}uesi:—ieﬂ-—Z.—I—n-t-bis—case-we—h'a\re—g(z )

a stationary point ccowrs at £ = 0 thus we have

t@
9O = 04040~ 2.

Hence we have
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If we use the substitution u = t(n/6)3 we have
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Substitution of the expansion into the differential equation leads to the following equations

e (I+2)yf+y =0,
e Yo + (L @)g] 4+ 1 =0,
. e ¥+ +a)h+y =0,

If we use the houndary condition ¥(1) = 1 we have the solutiors
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