Solutions to Problem Sheet 4. MSM3A05/MSM4A05.

Question 1.

We have that

$$J_0(x) = rac{1}{\pi} \mathcal{R}e \left\{ \int_0^{\pi} e^{ix \cos \theta} d\theta
ight\}.$$

Here we have that $g(\theta) = \cos \theta$ and $g'(\theta) = -\sin \theta$ and so there are two stationary points, one at $\theta = 0$ and the other at $\theta = \pi$. We therefore have $g(\theta) = 1 - \theta^2/2 + \cdots$ and $g(\theta) = -1 + \frac{1}{2}(\theta - \pi)^2 + \cdots$ at the two stationary points respectively. Consequently, we have

$$J_0(x) \sim \frac{1}{\pi} \mathcal{R}e \left\{ \int_0^\delta e^{ix(1-\theta^2/2+\cdots)} d\theta \right\} + \frac{1}{\pi} \mathcal{R}e \left\{ \int_{\pi-\delta}^\pi e^{ix(-1+\frac{1}{2}(\theta-\pi)^2+\cdots)} d\theta \right\}.$$

We can simplify the above integrals by letting the limits go to infinity and minus infinity respectively and choosing $u=\sqrt{x/2}\theta$ and $v=\sqrt{x/2}(\theta-\pi)$ in the first and second integral respectively, we then have

$$J_0(x) \sim \frac{1}{\pi} \sqrt{\frac{2}{x}} \mathcal{R}e \left\{ \int_0^\infty e^{ix-i\frac{1}{x}u^2} du \right\} + \frac{1}{\pi} \sqrt{\frac{2}{x}} \mathcal{R}e \left\{ \int_{-\infty}^0 e^{-ix+i\frac{1}{x}v^2} dv \right\}.$$

Using the identities from our notes we have

$$J_0(x) \sim \frac{1}{\pi} \sqrt{\frac{2}{x}} \mathcal{R}e \left\{ e^{ix} \frac{\sqrt{\pi}}{2} e^{-i\pi/4} \right\} + \frac{1}{\pi} \sqrt{\frac{2}{x}} \mathcal{R}e \left\{ e^{-ix} \frac{\sqrt{\pi}}{2} e^{i\pi/4} \right\},$$

and thus

$$J_0(x) \sim \frac{1}{\sqrt{2\pi x}} \left[\cos\left(x - \frac{\pi}{4}\right) + \cos\left(-x + \frac{\pi}{4}\right) \right].$$

Since $\cos \theta = \cos(-\theta)$ we have

$$J_0(x) \sim \frac{1}{\sqrt{2\pi x}} \left[\cos\left(x - \frac{\pi}{4}\right) + \cos\left(x - \frac{\pi}{4}\right) \right] = \sqrt{\frac{2}{\pi x}} \cos\left(x - \frac{\pi}{4}\right).$$

Question 2.

We have

$$I(x) = \int_{a}^{b} f(t)e^{ixg(t)}dt.$$

Since g(t) has a stationary point at $t = t_0$ and $g''(t_0) \neq 0$ we have

$$g(t) = g(t_0) + \frac{1}{6}g'''(t_0)(t - t_0)^3.$$

Thus we have

$$I(x) = \int_{t_0 - \delta}^{t_0 + \delta} f(t_0) e^{ixg(t_0)} e^{(ix/6)g'''(t_0)(t - t_0)^3} dt \sim f(t_0) e^{ixg(t_0)} \int_{-\infty}^{\infty} e^{(ix/6)g'''(t_0)(t - t_0)^3} dt.$$

If we let $\Omega = sgn(g'''(t_0))$ then we can choose a transformation $u = (t - t_0) \left((x/6) |g'''(t_0)| \right)^{\frac{1}{3}}$ to get

$$I(x) \sim \frac{f(t_0)e^{ixg(t_0)}}{((x/6)|g'''(t_0)|)^{\frac{1}{3}}} \int_{-\infty}^{\infty} e^{i\Omega u^3} du.$$

We have that

$$\int_{-\infty}^{\infty} e^{\pm iu^3} du = \frac{2}{3} e^{\pm i\pi/6} \Gamma\left(\frac{1}{3}\right).$$

(See examples class for explanation why).

We therefore have

$$I(x) \sim f(t_0)e^{ixg(t_0)} \left(\frac{6}{x|g'''(t_0)|}\right)^{\frac{1}{3}} \frac{2}{3}e^{\Omega i\pi/6}\Gamma\left(\frac{1}{3}\right).$$

Question 3.

Here we can use the ideas from Question 2. In this case we have $g(t) = \sin t - t$ and $g'(t) = \cos t - 1$ and so a stationary point occurs at t = 0 thus we have

$$g(t) = 0 + 0 + 0 - \frac{t^3}{6} + \cdots$$

Hence we have

$$J_n(n) = \frac{1}{\pi} \mathcal{R}e \left\{ \int_0^{\pi} e^{in(\sin t - t)} dt \right\} = \frac{1}{\pi} \mathcal{R}e \left\{ \int_0^{\pi} e^{-int^3/6} dt \right\}.$$

If we use the substitution $u = t(n/6)^{\frac{1}{3}}$ we have

$$J_n(n) \sim \frac{1}{\pi} \left(\frac{6}{n}\right)^{\frac{1}{3}} \mathcal{R}e\left\{\int_0^\infty e^{-iu^3} du\right\} = \frac{1}{\pi} \left(\frac{6}{n}\right)^{\frac{1}{3}} \mathcal{R}e\left\{\frac{2}{3}e^{-i\pi/6}\Gamma\left(\frac{1}{3}\right)\right\} = \frac{\Gamma\left(\frac{1}{3}\right)}{3\pi} \left(\frac{6}{n}\right)^{\frac{1}{3}} \cos(\pi/6).$$

Question 4.

Substitution of the expansion into the differential equation leads to the following equations

$$\begin{array}{lll} \epsilon^0 & : & (1+x)y_0' + y_0 = 0, \\ \epsilon^1 & : & y_0'' + (1+x)y_1' + y_1 = 0, \\ \epsilon^2 & : & y_1'' + (1+x)y_2' + y_2 = 0, \end{array}$$

If we use the boundary condition y(1) = 1 we have the solutions

$$y_0(x) = \frac{2}{1+x},$$

$$y_1(x) = \frac{2}{(1+x)^3} - \frac{1}{2(1+x)},$$

$$y_2(x) = \frac{6}{(1+x)^5} - \frac{1}{2(1+x)^3} - \frac{1}{4(1+x)}.$$

JU 21/11/10.